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Abstract 

 

 The increase of greenhouse gases in our atmosphere, particularly carbon dioxide 

(CO2), has been recognized by the scientific, industrial, and political communities. The 

increase in CO2 concentration has been connected to negative effects on our environment 

(global warming). Despite the negative associations of CO2, chemists can synthesize useful 

organic products and fuel from it. Ideally, the two electron reduction of CO2 to CO can 

provide one of the two products of synthesis gas (CO and H2), which is used in the Fischer-

Tropsch process to produce diesel fuel. This thesis aims to convert CO2 to CO, using a cheap 

and abundant metal, Fe. The research presented herein focuses on the redox-active 

capability of pyridinediimine (PDI) ligands and their promotion of the CO2-to-CO conversion 

on Fe(II). Furthermore, the chemical and electrochemical release of CO on Fe(II) has shown 

to complete the CO2-to-CO cycle. Additional studies with varying Lewis acids and Lewis 

bases located within the secondary coordination sphere of the PDIFe complex will be 

discussed. These studies demonstrated the electronic effects on the reduction-oxidation 

potential of the CO release in PDIFe(CO)2 complexes. 

 

 

 

 

 



www.manaraa.com

v 
 

Acknowledgements 

 

 There are numerous friends, staff members, mentors and professors whom I would 

like to thank; however I would like to acknowledge a few people specifically who 

contributed to the completion of my graduate career, scientifically, financially and 

emotionally. First and foremost, I would like to thank my parents, who supported my 

academic career from the very beginning. My family friends (Andrew, Ali, Joe, Jose, Ryan, 

Russ and Andrea) for their encouragement throughout this two year endeavour. My fab five 

brothers (Val, Daniel, Randy and Matt) who made Western Washington University a home. 

My ligand team (Brandon, Seth, Andy Charile, Yubin and Jillian) for their contribution to my 

scientific success. My non-ligand team (Eddie, Matt and Darren) for keeping me motivated 

and focused. My two editors (Anne and Andrea) for their numerous edits for the completion 

of this thesis. The master’s court (Bella, Pat, Casey, Jamie and Stas) for their emotional 

support. My cousin, Eric, for his wisdom. Charles F. Wandler for his unwavering assistance in 

every aspect of both my project and educational career. And finally my principle 

investigator, Dr. Gilbertson, for his guidance and mentorship. 

 

 

 

 

 



www.manaraa.com

vi 
 

Table of Contents 

I. Abstract…………………………………………………………………………………………………………………. iv 
II. Acknowledgements……………………………………………………………………………………………… v 
III. List of Tables and Figures…………………………………………………………………………………….. viii 
IV. List of Equations and Schemes……………………………………………………………………………. x 

 

Chapter 1. Introduction 
 

 

          1.1 CO2 Issues…………………………………………………………………………………………………. 1 
          1.2 CO2 Utilization……………………………………………………………………………………………. 5 
          1.3 CO2: The Molecule………………………………………………………………………………………. 9 
          1.4 CO2 Breakdown to CO (Biologically and Industrially)………………………………….. 11 
          1.5 Fischer-Tropsch Process…………………………………………………………………………….. 13 
          1.6 CO2 Breakdown to CO (In the laboratory)…………………………………………………… 14 
          1.7 Ligand Design (Redox-Active Ligands)………………………………………………………… 17 
          1.8 References…………………………………………………………………………………………………. 
 

20 

Chapter 2. Redox Active Ligand 
 

 

          2.1 Ligands (Conventional View)………………………………………………………………………. 22 
          2.2 Ligands (Non-Conventional View)………………………………………………………………. 24 
          2.3 Ligands (Redox Active)……………………………………………………………………………….. 29 
          2.4 Pyridinediimine Ligands……………………………………………………………………………… 33 
          2.5 Synthesis and Characterization of MeOPDI ligand………………………………………… 36 
          2.6 References…………………………………………………………………………………………………. 
 

43 

Chapter 3. CO2-to-CO Conversion  
 

 

          3.1 Binding of CO2.................................................................................................. 44 
          3.2 Breakdown of CO2 (Electrochemically)……………………………………………………….. 46 
          3.3 Breakdown of CO2 (Chemically)………………………………………………………………….. 49 
          3.4 Metallation of MeOPDI…………………………………………………………………………………. 52 
          3.5 Reduction of MeOPDIFeBr2…………………………………………………………………………... 56 
          3.6 Characterization of MeOPDIFeBr2 Complex (Reduced Ligand or Metal)………... 60 
          3.7 Breakdown of CO2 to CO on Reduced MeOPDIFe(II) Complex……………………….. 64 
          3.8 Oxygen Acceptors……………………………………………………………………………………….. 67 
          3.9 Proposed Mechanism for the Binding and Breakdown of CO2 to CO…………… 75 
          3.10 References………………………………………………………………………………………………… 77 
  



www.manaraa.com

vii 
 

 
Chapter 4. CO Release 
 
          4.1 Fe-CO Bond…………………………………………………………………………………………………. 79 
          4.2 Application of CO Release…………………………………………………………………………… 82 
          4.3 Five-Coordinate CO bound Fe Complexes…………………………………………………… 83 
          4.4 CO Binding Conditions (HOMO-LUMO Gap vs. Pairing Energy)…………………… 84 
          4.5 Comparing other CO bound Fe complexes (derived from CO2)…………………… 86 
          4.6 CO Release (Chemical Oxidation)……………………………………………………………….. 88 
          4.7 CO Release (Electrochemical Oxidation)…………………………………………………….. 92 
          4.8 Lewis Acid/Base PDIFe Complexes (Electrochemical Oxidation Studies)……… 93 
          4.9 Synthesis of Pendant Lewis Acid/Base PDIFeCl2 Complexes………………………… 95 
          4.10 Synthesis of Pendant Lewis Acid/Base PDIFe(CO)2 Complexes………………….. 102 
          4.11 Electrochemical Studies of Pendant Acid/Base PDIFe(CO)2 Complexes……… 113 
          4.12 References………………………………………………………………………………………………… 
 

116 

Chapter 5. Conclusion………………………………………………………………………………………………. 
 

118 

Chapter 6. Experimental 
 

 

          6.1 General Consideration………………………………………………………………………………… 120 
          6.2 References………………………………………………………………………………………………….. 153 
 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

viii 
 

Tables and Figures 

 

Figure 1.1: Surface temperature change of Earth (1880 – 2010)………………………………… 2 
Figure 1.2: Keeling Curve of CO2 concentration vs. time (1958 – 2008)………………………. 3 
Figure 1.3: CO2 emission from the US in 2011 (pie diagram)………………………………………. 4 
Figure 1.5: Molecular orbital diagram of CO2…………………………………………………………….. 9 
Figure 1.4: Lewis dot structure of CO2............................................................................ 10 
Figure 1.6: Crystal structure of carbon monoxide dehydrogenase (CODH)………………… 12 
Figure 1.7: Bercaw’s system for hydrocarbon production from CO and H-……………...... 14 
Figure 1.8: Notable electrochemical catalysts for CO2-to-CO conversion…………………… 16 
Figure 1.9: Notable chemical catalysts for CO2-to-CO conversion………………………………. 17 
Figure 1.10: Pyridinediimine ligand structure vs. active site of CODH………………………… 18 
Figure 2.1: Ball and stick structure of Alfred Werner’s Co complexes………………………… 22 
Figure 2.2: Structure of the picket fence iron porphyrin…………………………………………….. 23 
Figure 2.3: Spectrochemical series…………………………………………………………………………….. 24 
Figure 2.4: IR spectrum of compound 1…………………………………………………………………….. 37 
Figure 2.5: 1H NMR spectrum of compound 1……………………………………………………………. 38 
Figure 2.6: IR spectrum of compound 2……………………………………………………………………… 39 
Figure 2.7: 1H NMR spectrum of compound 2……………………………………………………………. 40 
Figure 2.8: CV of compound 2……………………………………………………………………………………. 42 
Figure 3.1: First insertion of CO2 to metal complex……………………………………………………. 44 
Table 3.1: Modes of bonding CO2 to metal centers……………………………………………………. 45 
Figure 3.2: Peters and coworkers reductive cleavage of CO2 to CO……………………………. 50 
Figure 3.3: IR spectrum of 3……………………………………………………………………………………….. 53 
Figure 3.4: 1H NMR spectrum of 3……………………………………………………………………………… 54 
Figure 3.5: Ortep of 3………………………………………………………………………………………………… 55 
Figure 3.6: Mössbauer spectrum of 3………………………………………………………………………… 56 
Figure 3.7: IR spectrum of 4……………………………………………………………………………………….. 58 
Figure 3.8: IR spectrum of 4(15N2)………………………………………………………………………………. 59 
Figure 3.9: 15N{1H} NMR spectrum of  4(15N2)…………………………………………………………….. 59 
Figure 3.10: IR spectrum of 5……………………………………………………………………………………… 61 
Figure 3.11: 1H NMR spectrum of 5……………………………………………………………………………. 62 
Figure 3.12: 13C{1H} NMR spectrum of 5…………………………………………………………………….. 62 
Figure 3.13: Ortep and Mössbauer spectrum of 5……………………………………………………… 64 
Figure 3.14: 13C{1H} NMR spectrum of 5(13CO2)…………………………………………………………. 66 
Figure 3.15: Overlay liquid IR spectra of 5(12CO2) and 5(13CO2)………………………………….. 67 
Figure 3.16: Ortep of 6………………………………………………………………………………………………. 69 
Figure 3.17: 11B{1H} NMR spectrum of 4…………………………………………………………………….. 71 
Figure 3.18: IR spectrum of 7……………………………………………………………………………………… 72 
Figure 3.19: 1H NMR spectrum of 7……………………………………………………………………………. 72 



www.manaraa.com

ix 
 

Figure 3.20: Ortep and Mössbauer spectrum of 7……………………………………………………… 73 
Figure 3.21: 29Si{1H} NMR spectra of the before and after CO2 reduction………………….. 74 
Figure 3.22: Proposed mechanism for the conversion of CO2-to-CO on MeOPDIFe(II)…. 76 
Figure 4.1: Crystal structure of CO bound hemoglobin………………………………………………. 80 
Figure 4.2: Orbital overlap of Fe-CO bonds………………………………………………………………… 81 
Figure 4.3: Energy profile of the binding and non-binding conditions of CO………………. 85 
Figure 4.4: Calibration curve for H2 and CO gas………………………………………………………….. 89 
Figure 4.5: GC of H2 and CO gas from headspace of equation 14……………………………..... 89 
Figure 4.6: Overlapy IR spectra of equation 14 and independently synthesized 7……… 91 
Figure 4.7: Molecular orbital diagram of the neutral and reduced MeOPDIFe(II)…………. 92 
Figure 4.8: CV of 5……………………………………………………………………………………………………… 93 
Figure 4.9: Saveant and coworkers TPPFe complexes for CO2-to-CO conversion……….. 94 
Figure 4.10: Ortep of Kendall’s [(Hdidpa)FeOH(NCC)][PF6] complex…………………………… 95 
Figure 4.11: Ortep and Mössbauer spectrum of 8……………………………………………………… 97 
Figure 4.12: IR spectrum of 8……………………………………………………………………………………… 98 
Figure 4.13: Ortep and Mössbauer spectrum of 9……………………………………………………… 99 
Figure 4.14: 11B{1H} NMR spectrum of 10…………………………………………………………………… 100 
Figure 4.15: Ortep and Mössbauer spectrum of 10……………………………………………………. 101 
Figure 4.16: Ortep and Mössbauer spectrum of 11……………………………………………………. 103 
Figure 4.17: 1H NMR spectrum of 11………………………………………………………………………….. 104 
Figure 4.18: 13C{1H} NMR spectrum of  11………………………………………………………………….. 105 
Figure 4.19: IR spectrum of 11…………………………………………………………………………………… 105 
Figure 4.20: Ortep and Mössbauer spectrum of 12……………………………………………………. 106 
Figure 4.21: 1H NMR spectrum of 12………………………………………………………………………….. 107 
Figure 4.22: 13C{1H} NMR spectrum of  12……………………………………………………………..…… 108 
Figure 4.23: IR spectrum of 12………………………………………………………………………………..…. 108 
Figure 4.24: Ortep and Mössbauer spectrum of 13…………..………………………………………. 109 
Figure 4.25: 1H NMR spectrum of  13…………………………………………………………………………. 110 
Figure 4.26: 13C{1H} NMR spectrum of  13………………………………………………………………….. 111 
Figure 4.27: IR spectrum of 13…………………………………………………………………………………… 111 
Figure 4.28: 11B{1H} NMR spectrum of 13…………………………………………………………………… 112 
Figure 4.29: CV of 11, 12 and 13………………………………………………………………………………… 114 
Figure 6.1: 13C{1H} NMR spectrum of  2………………………………………………………………………. 128 
Figure 6.2: 1H NMR spectrum of 7 from equation 14 ………………………………………………… 138 
Figure 6.3: 29Si{1H} NMR spectrum of the reaction mixture of 4 and excess TMSCl……. 140 
Figure 6.4: 11B{1H} NMR spectrum of  the post CO2 reaction………………………………………. 142 
Figure 6.5: Pictures of CO2 reduction of 4………………………………………………………………..… 143 
Figure 6.6: 1H NMR spectrum of  8……………………………………………………………………………… 145 
Figure 6.7: 1H NMR spectrum of  9……………………………………………………………………………… 147 
Figure 6.8: 1H NMR spectrum of  10……………………………………………………………………………. 149 
 



www.manaraa.com

x 
 

Equations and Schemes 

 

Equation 1: General combustion reaction…………………………………………………………………. 5 
Scheme 1.1: Useful chemicals derived from CO2……………………………………………………….. 8 
Equation 2: Irreversible reaction of CO2 to CO…………………………………………………………… 11 
Equation 3: Dry reforming…………………………………………………………………………………………. 12 
Equation 4: Fischer-Trospch process…………………………………………………………………………. 13 
Scheme 2.1: Cummins and coworkers’ CO2-to-CO cycle on nitride anion ligand………… 26 
Scheme 2.2: Borovik and coworkers’ O2 to H2O cycle on monomeric Mn(II) complex… 27 
Scheme 2.3: Wieghardt‘s formation of diols from 2nd alcohols on CuII………………………. 28 
Scheme 2.4: Wieghardt’s two e- oxidation of 1st alcohols to aldehydes on Zn(0)……….. 30 
Scheme 2.5: Heyduk’s catalytic cycle for nitrene transfer on Zr(IV)……………………………. 31 
Scheme 2.6: Soper’s catalytic cycle for C-C bond formation on Co(III)……………………….. 33 
Scheme 2.7: Chirik’s [2 + 2] cycloaddition on PDIFe(II)………………………………………………. 34 
Scheme 2.8: iprPDIFe(CO)2 complex in varying oxidation states………………………………….. 35 
Equation 5: Synthesis of 1…………………………………………………………………………………………. 36 
Equation 6: Synthesis of 2…………………………………………………………………………………………. 39 
Scheme 2.9: Redox-active MeOPDI ligand displaying varying reduction states…………….. 41 
Scheme 3.1: Tanaka’s catalytic reduction of CO2 to CO on (bipy)2Ru(II)(CO)2……………. 47 
Scheme 3.2: Dubios’ catalytic reduction of CO2 to CO on polydentate phosphine Pd... 48 
Scheme 3.3: Holland’s reductive disproportionation of CO2 to CO and CO3

2-……………… 49 
Scheme 3.4: Field’s reductive disproportionation of CO2 to CO and HCO3

-…………………. 51 
Equation 7: Synthesis of 3…………………………………………………………………………………………. 52 
Equation 8: Generation of 4………………………………………………………………………………………. 57 
Equation 9: Synthesis of 5…………………………………………………………………………………………. 60 
Equation 10: Reactivity of 4 with CO2……………………………………………………………………….. 65 
Equation 11: Synthesis of 6……………………………………………………………………………………..… 68 
Equation 12: Reactivity of 6 with CO2………………………………………………………………………. 70 
Equation 13: Reactivity of 4 with CO2 and TMSCl………………………………………………………. 70 
Scheme 4.1: Steric affects CO binding to Fe(II) complexes…………………………………………. 81 
Scheme 4.2: Photo-activated CO release on Aust and Motterlini’s metal complexes…. 83 
Scheme 4.3: CO irreversible binding on five coordinate Fe complexes………………………. 84 
Scheme 4.4: Notable Fe(I) and Fe(II) complex for reduction of CO2 to CO………………….. 87 
Equation 14: Reactivity of 5 with HCl…………………………………………………………………………. 88 
Scheme 4.5: Synthesis of PDIFeCl2 complexes containing pendant Lewis acid/bases…. 96 
Scheme 4.6: Synthesis of PDIFe(CO)2 complexes containing pendant Lewis 
acid/bases………………………………………………………………………………………………………………… 

 
102 

Scheme 4.7: Electrochemical oxidation of PDIFe(CO)2 complexes……………………………… 113 
Scheme 5.1. CO2-to-CO cycle on MeOPDIFe(II) complex………………………………………………. 118 



www.manaraa.com

Chapter 1: Introduction 

 

 

1.1 CO2 Issues 

 

 Climate change, as result of global warming has become a major focus of 

government, public, and corporate debate due to its world-wide consequences. Such 

consequences include, but are not limited to, adverse effects on agriculture, oceanic wildlife 

and living conditions of human beings.1,2 With respect to agriculture, Wilbanks and 

coworkers believe that severe climate change will negatively affect food productions 

necessary to sustain the growing population.3 In terms of oceanic wildlife, a variety of 

species are suffering from the gradual temperature elevations. For example, reductions in 

the abundance of two species of pteropod (planktonic marine molluscs) and of bivalve 

larvae are apparent in large-scale survey data for the northeastern Atlantic over the period 

1960–2007.4 Lastly, for human beings, climate change can mean exposure to more severe 

weather events (hurricanes, tsunami and droughts). The rise of sea-level can impact the 

popultation and its distribution, resource consumption and waste disposal, which affect 

global and regional economies.2  

 

 The Intergovernmental Panel on Climate Change (IPCC) has placed a 2 oC increase 

limit on temperature rise (since the pre-industrial period) in order for human living 

conditions to be tolerable. However, due to the rising of the average global temperature 
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(0.74 ± 0.18 oC over the period of 1906 through 2005), the perdicted 2 oC increase limit is 

projected to pass within this decade (Figure 1.1).5 

 

 

Figure 1.1. Global surface temperature change from 1880 to 2010, reported as a deviation 
from 1951-1980 average. The black curve shows the globally and annually averaged near-
surface temperature derived from a variety of instruments including thermometers, 
satellites, and various ocean sensors. The green bar indicates the 95% confidence interval. 
The red curve shows a five year running average.5   
 

 This increase in temperature has been accompanied by the rise in greenhouse gases 

such as carbon dioxide (CO2), water (H2O), methane (CH4), and nitrous oxide (NO).6 This 

accumulation of greenhouse gases forms a layer between our atmosphere and outer space, 

preventing infrared (IR) energy (black body radiation from Earth) to escape from our planet, 

consequently warming the globe. Of the greenhouse gases, CO2 is considered to play the 

biggest role in global warming.7 Although carbon dioxide is not the most effective 
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greenhouse gas, in terms of radioactive trapping, it is by far the most abundant (Figure 

1.2).8  

 

 Presently, the amount of CO2 in our atmosphere has reached 400 parts per million 

(ppm), which is a historic milestone.9 The last time the worldwide CO2 level reached 400 

ppm was approximately 10 million years ago, according to the National Oceanic and 

Atmospheric Administration.9 Scientists and environmental groups support 350 ppm as a 

safe level for CO2, however, due to numerous variables that contribute to this crisis, 

scientists cannot make a definite prediction of what levels would stop the effects of global 

warming. Despite the lack of predictability, the underlying message is clear, that the levels 

of CO2 and the temperature of our planet are intimately connected.  

 

 

Figure 1.2. The Keeling Curve showing the increase of atmospheric CO2 concentrations (in 
ppm by volume) from 1958-2008. The inset figure illustrates monthly CO2 measurements, 
displaying seasonal oscillations.9  
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 The increase in CO2 concentration can be directly correlated to human activities. In 

2011, the use of electricity in the United States accounted for 35% of all CO2 emission (2.25 

billion metric tons of CO2) (Figure 1.3).10 Most of the electricity is generated by coal 

combustion (representing 42% of electricity generated and 80% of all CO2 emission from the 

electrical sector). While other energy sources, such as nuclear, generated 19% of all US 

electricity and produced less greenhouse gas emissions than coal or fossil fuel 

combustion.10 The use of coal for electricity, rather than a cleaner source such as nuclear, is 

driven by cost; consequently, coal power plants will continue to operate.  

 

 

Figure 1.3. A Pie diagram of CO2 emission from various human activities within the United 
States of America, in 2011. This diagram was taken from the Environmental Protection 
Agency.10 
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 Coal and fossil fuel are composed of hydrocarbons (CxHy), which are long chain 

organic molecules consisting of carbon and hydrogen. When hydrocarbons combust in the 

presence of oxygen (O2), carbon-oxygen (in CO2) and hydrogen-oxygen (in H2O) bonds are 

produced, which releases energy to power our cars and heat our homes (eq. 1). Every 

hydrocarbon burned can be simplified down to a combustion reaction, in which CO2 is 

ultimately derived from human beings. Therefore, it is the responsibility of human beings to 

lessen the impact of CO2 on the environment. 

 

 

 

1.2 CO2 Utilization 

 

 Despite the mitigation of CO2 from terrestrial carbon fixation (1/3 of all CO2 in the 

atmosphere) by plants, algae and cyanobacteria, and the uptake of CO2 by the ocean (2 

billion metric tons of CO2 per year), the amount of CO2 in our atmosphere continues to 

increase each year (~3 ppm per year, in the last ten years).11,12 Therefore, methods have 

been sought and implemented for the recovery and disposal of CO2 from point-continuous 

sources, such as power plants and industries for the elimination of large volumes of CO2.13 

The capture of CO2 from the flue gases of coal, oil, or gas-fired power plants and from 

industrial processes use liquids, such as monoethanolamine (MEA), which is commercially 
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available.14 MEA is a weak base, which interacts with acidic compounds, such as CO2 under 

cold conditions. This interaction occurs in solution to sequester CO2, and once the solution 

is heated, CO2 is re-released. The release of CO2 is done in natural sites, such as: aquifers, 

deep geological cavities, spent oil or gas-fields, coal-mines, or the ocean.15 However, CO2 

capturing technology such as MEA is only implemented at the million metric ton level, while 

the release of CO2 from industry operates on the billion metric ton level.  

 

 Another method to reduce the amount of CO2 released into our atmosphere is 

through the recycling of CO2 into valuable chemicals, such as urea, methanol and inorganic 

compounds (pigments). Approximately 110 million metric tons per year of CO2 is converted 

into chemicals (roughly 1% of the annual release of CO2 by the human population). Leading 

the way is the production of urea (with 70 million metric tons per year), which is a key 

component of fertilizer for food development, promotion of rehydration of the skin in 

dermatological products and a primary building block for plastic materials.16 Inorganic 

carbonates and pigments use about 30 million metric tons of CO2 each year for cleaning and 

preservation, as well as for the manufacture of glass. Carbonates can be synthesized from 

the reaction of CO2 and epoxides.16 A very important chemical, methanol, can also be 

synthesized from CO2 with the help of an inorganic catalyst. Methanol production utilizes 6 

million metric tons of CO2 each year and can be used as a fuel or further used for the 

production of plastics, plywood, paints, explosives and permanent press textiles.17 CO2 has 

also found applications as a fluid in dry-cleaning, refrigerators, air conditioners, fire-
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extinguishers, separation techniques, water treatment and the food- or agro-chemical 

industries.18 These chemicals and others, that are derived from CO2 are highlighted in 

Scheme 1.1.19-21 With the exception of methanol, most of the chemicals derived from CO2 

are purely thermal based processes, owning to the thermo-stability of the CO2 molecule. 
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Scheme 1.1. Desirable chemicals derived from CO2. This scheme was taken from Sakaura 
and coworkers.19 The $ symbol in the scheme represents the industrialized chemicals from 
CO2. 
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1.3 CO2: The Molecule 

 

 Thermodynamically, CO2 is very stable, with an enthalpy of formation of gaseous CO2 

of -393.5 kJ/mol at 0 oC and 100 kPa (STP) (compared to H2O which is -285.8 kJ/mol at STP). 

Furthermore, the bond dissociation energy of the double bond (C=O) of CO2 is even higher, 

at 532 kJ/mol.22 CO2 is also kinetically inert, requiring -1.90 volts to reduce CO2 by one 

electron. Therefore, the high activation barrier, coupled with the large bond enthalpy of CO2 

makes the breakdown of CO2 a difficult task.   

 

 CO2 is a linear, centrosymmetric molecule with a D∞h symmetry and has a total bond 

order of four (two σ and π bonds) (Figure 1.4).23 Although CO2 is non-polar overall, it does 

have a partial positive carbon center with two partial negative oxygen atoms (Figure 1.5). 

These key features play a vital role towards the reactivity of CO2, as well as its eventual 

breakdown and transformation.  

 

 

Figure 1.5. The CO2 molecule displays a partial positive center and negative edge, which 
allows chemists to access the chemistry of CO2. 
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Figure 1.4. The molecular orbital diagram of CO2, displaying the four lone pair and the four 
bonding orbitals.23  
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1.4 CO2 breakdown to CO (Biologically and Industrially) 

 

 With the known information regarding the characteristics of the CO2 molecule, it is 

clear that the breakdown of CO2 to CO is rather difficult. However, anaerobic bacteria and 

archaea (oxygen sensitive) and aerobic bacteria (not oxygen sensitive) have evolved to 

reversibly catalyze the reaction of CO with H2O to form CO2, protons, and electrons with a 

high turnover frequency (40,000 s-1) and catalytic efficiency (2.0 x 109 M-1 s-1) (eq. 2).24 

 

 

  

 These bacteria and archaea contain the enzyme carbon monoxide dehydrogenase 

(CODH), which catalyzes the breakdown of CO2. The binding of CO2 takes place within the 

active site of these enzymes. For example, anaerobic bacteria use a Ni-Fe active site where 

the nickel acts as a Lewis base and performs a nucleophilic attack at the partial positive 

carbon center of CO2. The Fe acts as a Lewis acid and binds to the partial negative charge on 

the oxygen of CO2 (Figure 1.6). Also, the CO2 molecule is further stabilized through hydrogen 

bond interactions with neighboring amino acid residues located on the backbone of the 

enzyme.25 The positions of the Ni and Fe are held in place by the Fe3S4 framework and are 

essentially unchanged by the presence or absence of CO2. The cluster also serves to act as 

an electronic buffer, stabilizing the electronic charges on Fe and Ni during the catalytic 

cycle.  
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Figure 1.6. Crystal structure of the CODH enzyme (left) and its active site (right), isolated 
from the bacteria of Rhodospirillium rubrum. The active site shows how the metals bind to 
CO2. Images taken from Dobbek and coworkers.25 

 

 Despite information regarding the biological breakdown of CO2, industries thermally 

breaks down CO2 to CO through the dry reforming process (eq. 3). The dry reforming plants 

require 247.1 kJ per mole of CO2, in order to produce two molecules of CO. This process 

produces a mixture of CO and hydrogen gas (H2), which combined are referred to as 

synthesis gas (syngas).26 Syngas is desirable due to its use as an industrial feedstock, 

particularity in the Fischer-Tropsch (FT) process to produce diesel fuel.27 Effectively, an 

efficient way to breakdown the greenhouse gas, CO2, to a desirable chemical that is a key 

component to diesel production, CO, would be an ideal scenario for a carbon neutral world. 

Using the information provided by CODH, chemists can gain insights on how to breakdown 

CO2 to CO (one half of syngas).  
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1.5 Fischer-Tropsch Process 

 

 Although the ultimate goal of this thesis is on the conversion of CO2-to-CO, it is 

worth mentioning the final utility of CO. CO and H2 gas combined, are the starting materials 

for the FT process for the production of diesel fuel (eq. 4). The FT process is a well-known 

and well-proven process that utilizes either Fe or Co based catalysts.27 Currently, the FT 

process operates in two modes, the high-temperature (300-350 oC) with an Fe-based 

catalyst or a low-temperature (200-240 oC) with either Fe or Co based catalyst. The high-

temperature mode is geared towards the production of gasoline and linear low molecular 

mass olefins, while the low-temperature mode can produce high molecular mass linear 

waxes.27 The FT hydrocarbons are also promising alternatives to conventional gasoline and 

diesel, because they are totally free of sulfur and contain very few aromatics.28 

 

 

         

 The FT process is primarily a heterogeneous reaction, where the metal based 

catalyst is in the solid phase, reacting with high pressurized syngas. Efforts have been made 

to produce a homogenous catalyst (same phase reaction) for the FT process, largely due to 

better selectivity and easier modification of the catalyst when compared to heterogeneous 

catalysts. Early transition metal hydrides, and more recently rare earth polyhydride and 

actinide complexes, have shown remarkable reactivity towards CO.29-31 For example, Bercaw 
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and coworkers have suggested a multi-component system, where their approach involved 

the use of two reactive metal centers. A rhenium carbonyl complex with pendant borane 

moieties serves as the binding site for CO, while a hydrido-bis(diphosphine) platinum 

complex acts to provide the hydride (Figure 1.7).32 

 

 

Figure 1.7. Structure of Bercaw’s system towards the production of hydrocarbon from CO 
and hydride.$12  
 

 

1.6 CO2 breakdown to CO (In the laboratory) 

 

 Ultimately, the goal of this thesis is also to make a homogenous catalyst, for the 

breakdown CO2 to CO, utilizing the functionalities of CODH. Inorganic chemists have found 

their own route towards utilizing inorganic complexes for the reduction of CO2 to CO. Some 

find inspiration from enzymes33-35 while others start fresh or build upon older works.36-38 

There are two classes of reactions which will be discussed within this subchapter, first the 

electrochemical reduction of CO2 to CO, and second, the chemical reduction of CO2 to CO.  
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 The use of various metals (Ru, Rh, Pd, Fe, Ni, Cu and Co) and ligand scaffolds 

(bipyridine, macrocyclic and phosphine ligands) have been employed by several groups.39-44 

Of these metal complexes, Savéant and coworkers utilized highly abundant, cheap metal 

ions for CO2 reduction, with turnover numbers as high as 350 h-1. However, this system 

required reduction potentials that are still too negative for practical use (-1.5 V vs. SCE) 

(Figure 1.8).36 Other notable electrochemical catalysts for the reduction of CO2 to CO are 

the polydentate phosphine palladium complexes, which were synthesized by Dubois and 

coworkers (Figure 1.8).44 This class of complex displayed catalytic rates in the range of 10 to 

300 M-1 s-1 with higher than 90% current efficiencies for CO production. The PdI species was 

proposed to bind the CO2 molecule, then upon addition of electrons and protons (from 

acidic acetonitrile solution), the production of CO and H2O was observed. Lastly, Kubiak and 

coworkers tested the bipyridine rhenium complexes for the reduction of CO2 to CO and 

found the tert-butyl substituents have the best rate constant of 1000 M-1 s-1 and Faradaic 

efficiency of 99% (Figure 1.8).45 The tert-butyl group played a role in tuning the electronics 

of the metal, to prevent Re dimers, which would ultimately discontinue catalytic activity.   
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Figure 1.8. Notable electrochemical catalysts that reduce CO2 to CO.36,44,45  

 

 Chemical reduction of CO2 to CO has also been shown, generally for the elucidation 

of CO2 binding modes and mechanistic studies. Peters and coworkers has shown a reduction 

of CO2 to CO, with minor CO2 coupling on a tris(phosphine)borate Fe(I) complex (Figure 

1.9).46 However, there was no release of CO from Fe in this system. Holland and coworkers 

also utilized an Fe(I) center for the reduction of CO2 to CO, with the help of a 2,2,6,6-

tetramethyl-3,5-bis-[2,6-diisopropylphenyl)imino]hept-4-yl ligand. They showed that CO2 

can be cleaved to produce two bound products, CO and CO3
2- (Figure 1.9).47 Again, this 

system does not release CO nor promote CO transformation. Lastly, Cummins and 

coworkers displayed the conversion of CO2 to CO by the ligand (nitride), which was bound to 

a niobium center (Figure 1.9).48 They elaborately designed a system that prevents the CO2 

molecule from binding to the metal center. Instead, their model allowed the CO2 molecule 
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to bind to the Lewis base, nitride. The importance of the partial positive charge on the 

carbon of CO2 allows the nitride’s lone pair to perform a nucelophilic attack. Cummins and 

coworkers also observed the release of CO, with the addition of oxygen atom acceptors. The 

design of the ligand has proven to affect the chemistry of the CO2 reduction, which 

Cummins displayed with his nitride ligand, and also from Kubiak, with his tert-butyl 

substituents on the bipyridine ligand. Therefore, ligand design will continue to be an 

integral part of catalysis and inorganic chemistry.     

 

 

Figure 1.9. Catalysts that reduces CO2 to CO, chemically.46-48 

 

 

1.7 Ligand Design (Redox Active Ligands) 

 

 Although the metal center is key for CO2 reduction, other factors, such as the ligand 

(the organic framework that surrounds the metal ion) can also play a big role in the 
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reduction. Functionalizing the secondary coordination sphere of the ligand may affect the 

binding modes of CO2, similar to the amino acid residues of the CODH enzyme. Ligands can 

also tune the electronics of the metal center to affect the overall catalytic rate of the 

catalyst, similar to Kubiak’s bipyridine rhenium catalyst.46 Ultimately, the reduction of CO2 

to CO requires two electrons, and those two electrons are primarily supplied by the metal 

center. Cummins and coworkers have proved that the ligand can provide the two electrons 

necessary for C=O cleavage; this system sets the stage for further investigation into 

designing ligands that can supply electrons, similar to the FeS cluster of CODH.25 Redox-

active ligands have been intensively researched and have shown to affect the catalytic rates 

of metal complexes. One such redox-active ligand is the pyridinediimine (PDI), which will be 

the ligand of focus for this thesis (Figure 1.10).  

 

 

Figure 1.10. The structure (left) represents the pyridinediimine metal complex, showing the 
versatility of this ligand system to mimic the CODH enzyme (right).25 
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 The purpose of this thesis is to contribute to the copious collection of the known CO2 

to CO reductions, utilizing studies on the redox-active PDIFe(II) complex. This work will 

describe the CO2 cleavage on a Fe(II) metal ion, through the facilitation of the reduced PDI 

ligand. The PDI ligand will also incorporate functionalized groups, located within the 

secondary sphere, in order to influence the binding and releasing of CO on Fe, for the 

completion of the CO2-to-CO cycle 
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Chapter 2. Redox Active Ligands 

 

 

2.1 Ligands (Conventional View) 

 

 In coordination chemistry, a ligand is an ion or molecule that binds to the central 

metal atom to form a coordination complex (metal complex). Nobel prize winner Alfred 

Werner pioneered the basic concepts of coordination chemistry with his octahedral 

configuration of transition metal complexes, such as the trans-[Co(NH3)4Cl2]+ and cis-

[Co(NH3)4Cl2]+ (Figure 2.1). The bonding between the metal and the ligand generally 

involves dative bonds, where the ligand (Lewis base) donates two electrons to the metal 

(typically a Lewis acid).  

 

 

Figure 2.1. Ball and Stick structure of Alfred Werner’s trans-[Co(NH3)4Cl2]+ (left) and cis-
[Co(NH3)4Cl2]+ (right). The central atom is Co, and the surrounding molecules/atoms are 
called ligands. 
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 Conventionally, ligands are viewed as having secondary roles in reactivity, such that 

changing the steric and electronic properties of the ligands can influence the performance 

of the metal center.1 A classic example of how ligand steric affects the reactivity of a metal 

complex can been seen in the “picket fence” iron porphyrin complex. In this case, Robinson 

and coworkers designed bulky tert-butyl groups on the ends of the porphyrin and an 

imidazole group on the unhindered side of the porphyrin to close out the binding site of Fe 

on one end.2 The picket fence design was intended to discourage bimolecular reactions 

involving two Fe ions and dioxygen. The bulky picket fence porphyrin permitted only small 

molecules, such as O2, to pass through and bind to the Fe center, and prevented another Fe 

center (from another porphyrin) to complete a bridging oxo complex (Figure 2.2). 

 

 

Figure 2.2. Structure of the picket fence iron porphyrin, displaying the steric bulk design of 
the ligand, meant to prevent iron oxo dimers.2  
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 Ligand electronic effects have been well categorized into the spectrochemical series, 

where ligands are ordered based on their ligand field strength (Figure 2.3). The ligand field 

strength provides insight into how ligands modify the highest occupied molecular orbital – 

lowest unoccupied molecular orbital (HOMO-LUMO) gap. The HOMO-LUMO gap is the 

energy gap between the ground state and the next available excited state of the metal 

complex. This is also called the crystal-field splitting parameter, which can be quantified by 

measuring the color of the metal complex in Ultraviolet-visible (UV-Vis) spectroscopy.3 Thus, 

the overall trend of the spectrochemical series of ligands is that a smaller HOMO-LUMO gap 

of the metal complex corresponds to weaker field ligands while a larger HOMO-LUMO gap 

of the metal complex corresponds to stronger field ligands.   

 

 

Figure 2.3. Spectrochemical series, showing the field strength of selected ligands. 

 

 

2.2 Ligands (Non-Conventional View) 

 

 Recently, new approaches have emerged that deviate from the conventional 

concept that ligands predominantly play a secondary role in catalysis. This new approach 

comes from reactive ligands, which performs a more prominent role in the catalysis of 
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metal complexes. With reactive ligands, elementary bond-making and bond breaking steps 

at a rather distant position from the metal can take place and/or ligands can cooperate with 

metals in a synergistic manner to facilitate chemical processes.4  

 

 Such ligand involved bond making and bond breaking steps can be seen in Cummins 

and coworkers example of the nitride ligand, which is bound to a d0 niobium center and 

participates in the reduction of CO2.5 The design of the niobium complex prevents CO2 

molecules from binding to the metal center, as is normally preferred for small molecules. 

Due to the electron poor niobium center and the electron rich nitride, the partial positive 

charge on the carbon of CO2 binds only to the nitride ligand. With the addition of oxygen 

atom acceptors, such as acid anhydride, and sacrificial reducing agents, such as sodium 

amalgam, a closed cycle of CO2-to-CO was generated (Scheme 2.1) 
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Scheme 2.1. Cummins and coworkers’ CO2-to-CO cycle on a nitride anion ligand.5  

 

 Additionally, a synergistic approach can be seen in Borovik’s catalytic reduction of 

dioxygen to water using a monomeric Mn(II) complex. Here, the ligand is comprised of 

carboxyamido groups that can hydrogen bond to the bound dioxgyen molecule. The 

hydrogen bond interactions, via the ligand, help facilitate the reduction of dioxygen to 

water by stabilizing the highly reactive monomeric Mn-O complex. Addition of sacrificial 

reductants, such as diphenylhydrazine or hydrazine, supply the electrons and protons 

needed to complete the reduction to H2O (Scheme 2.2).6 
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Scheme 2.2. Borovik and coworkers’ O2 to H2O cycle using a monomeric Mn(II) complex. 
The mechanism highlights the hydrogen bond between one carboxyamido group from the 
ligand and the oxygen atom from dioxygen, in order to stabilize the complex for further 
reduction to H2O.6    
 
 
 Lastly, Wieghardt and coworkers reported a dimer CuII-thiophenyl complex, which 

does not only catalyze the oxidation of primary alcohols to aldehydes in the presence of air, 

but also promotes the formation of diols from secondary alcohols (Scheme 2.3).7 The 

catalytic cycle involves the oxidation of the Cu complex by O2, which leads to a ligand-based 

biradical specie. The coordination of two (deprotonated) secondary alcohols occurs and the 

α-hydrogen atom is transferred to the oxygen-centered radicals of the aminophenol ligand. 
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The radicals are then positioned on the carbon of the alcohols before radical dimerization 

and elimination of the diol. 8  

 

 

Scheme 2.3. Wieghardt and coworkers’ formation of diols from secondary alcohols using a 
dimer CuII-thiophenol complex. Hydrogen bonding and radical formation via the thiophenol 
promote the catalytic cycle.8  
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2.3 Ligands (Redox Active) 

 

 With respect to Weighardt’s example, the radicals positioned within the oxygen 

atoms of the thiophenol ligand helped facilitate the last step of the reaction. The thiophenol 

ligand pertains to a new sub-class of reactive ligands called redox-active ligands. Redox-

active ligands are of great interest in the field of catalysis due to their role in facilitating 

multi-electron transfer reactions. Multi-electron reactions are normally achieved by 

precious metals, since they typically undergo ± two electron oxidation state changes. 

However, precious metals are incredibly costly, especially on the industrial scale. Therefore, 

cheap and abundant first row transition metals that can promote the same types of 

reactions are fervently sought by chemists. The problem is that first row transition metals 

tend to undergo ± one electron oxidation state changes.9 Due to potential radical 

intermediates and the formation of side products, successive one electron transfers must 

be avoided. Chirik and Wieghardt have proposed that redox active ligands may be able to 

confer nobility (act like noble metals) on first row transition metals by combining a one 

electron redox change at the ligand and a one electron redox change at the metal for an 

overall two electron change.9 

 

 The two electron oxidation of alcohols is possible with a redox inactive metal such as 

Zn(II), when redox active ligands are bound. A prime example is shown with Wieghardt’s 

salen Zn(II) complex, that oxidizes primary alcohols to aldehydes and reduces O2 to H2O2 by 
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two electrons (Scheme 2.4).10 The salen ligand allows the Zn(II) complex to store an 

oxidizing equivalent in its highly conjugated framework. Futhermore, the compound is able 

to reversibly coordinate a primary alcohol and participate in a slow H-atom abstraction, 

followed by the formation of a transient α-hydroxyradical that can go on to eliminate the 

aldehyde product. The resulting reduced salen Zn(II) complex can be re-oxidized with 

atmospheric O2, thus liberating H2O2. This same chemistry was also observed with a Cu 

analogue.10 

 

 

Scheme 2.4. The two electron oxidation of primary alcohols to aldehydes on Wieghardt’s 
redox inactive metal (Zn) with the help of a redox active salen ligand.10 
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 Another system that utilized a d0 metal complex is Heyduk’s bis(2-isopropylamido-4-

methoxyphenyl)amide ([NNNcat]) Zr(IV) complex, which participate in the catalytic transfer 

of nitrene.11 One tert-butyl isocyanide (CNtBu) dissociates from the [NNNcat]Zr(IV)(CNtBu)2Cl 

complex to open up a reactive site in which p-tert-butylphenyl azides can bind. At room 

temperature, N2 gas is generated as well as the carbodiimide bound [NNNcat]Zr(IV)Cl 

complex. Addition of one more CNtBu group completed the nitrene transfer to obtain the 

product tBuN=C=NtBu and the catalyst [NNNcat]Zr(IV)(CNtBu)2Cl. The two electrons transfer 

was derived from the [NNNcat] ligand, allowing the Zr metal center to remain in its IV 

oxidation state (Scheme 2.5). 

 

 

Scheme 2.5. Heyduk’s catalytic cycle for nitrene transfer on a Zr(IV) complex.11 R represents 
tert-butyl groups. 
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 Another example of how redox active ligands play a prominent role in catalysis is in 

C-C bond formation. Soper and coworkers have developed a catalytic C-C bond formation 

using the first row transition metal, cobalt.12 Their bis-iminophenolate cobalt(III) complex is 

able to accommodate the formal pseudo-oxidative addition of an alkyl fragment to yield a 

five-coordinate square pyramidal Co(III) complex. In 2011, Bruin and coworkers highlighted 

the bis-iminophenolate ligand in Angewandte Chemie’s highlight as an electron reservoir, 

which can store and release electrons without changing the oxidation state of the metal 

center.13 Thus, the five-coordinate square pyramidal Co(III) complex has an 

antiferromagnetically coupled bis-iminophenolate ligand diradical, due to the ligand 

induced nucleophilic abstraction of the positive alkyl fragment by the Co center. The 

reaction is followed by a group transfer reaction, either to aryl or alkyl zinc halides to yield 

the C-C coupled products (Scheme 2.6). This reaction showcases the rich chemistry of 

redox-active ligands that can access first row transition metal catalysis in catalytic cross 

coupling reactions, a process which has been dominated by expensive metal catalyst, such 

as Negishi’s zinc-based palladium catalyzed cross-coupling.14 
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Scheme 2.6. Soper and coworkers’ catalytic cycle for C-C bond formation by a redox-active 
bis-iminophenolate Co(III) complex. The bis-iminophenolate ligand assists the cobalt center 
to accommodate the formal pseudo-oxidative addition of an alkyl fragment.12 

 

 

2.4 Pyridinediimine Ligands 

 

 Chirik and coworkers made significant advancement in the application of Fe(II) 

catalyzed [2 + 2] cycloaddition reactions using redox active 2,6-pyridinediimine (PDI) 

ligands.15 As shown in Scheme 2.7, the bis-dinitrogen Fe(II) complex binds the diene 

substrate in an end-on fashion to form a π-complex. Both complexes contain a diradical 

dianionic PDI ligand.16,17 The bound diene Fe(II) complex undergoes a two electron oxidative 

addition to produce an oxidized PDI Fe(II) complex. The electrons required for this 

transformation come from the ligand rather than the Fe center, allowing for Fe to maintain 
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a +2 oxidation state. Subsequently, the oxidized PDI Fe(II) complex undergoes a two 

electron reductive elimination reaction to liberate the product. The two electrons are again 

positioned within the PDI ligand, leading to the regeneration of the starting material. Once 

more, the electron-storage capacity of the PDI ligand allows the metal to maintain its stable 

Fe(II) oxidation state (avoiding the less favorable Fe(IV) oxidation state). 

 

 

Scheme 2.7. Chirik and coworkers [2 + 2]- cycloaddition reactions using a redox active 
pyridinediimine Fe(II) complex.15 

 

 Related pyridinediimine Fe(II) complexes have also been studied for catalyzing enyne 

cyclization, intermolecular [2 + 2] cycloadditions of alkenes to butadienes, and olefin 

polymerization.18-21 The PDI system has been extensively studied with various ligands (weak 



www.manaraa.com

35 
 

and strong field ligands) and it has been found that the PDI Fe complex can access up to 

three electrons (Scheme 2.8).22 

 

 

Scheme 2.8. iprPDIFe(CO)2 complex displaying its three, two and one electron reduced state. 

 

 In this thesis, the study of PDI Fe(II) complexes will be applied to the two electron 

reduction of CO2 to CO and the chemical/electrochemical redox events involved in the 

release mechanism of CO. The PDI ligand system was employed due to the ease of its 

synthesis, high modification and production of high product yields. The main PDI ligand 

used within this thesis is the [(2,6-iPrC6H3)N=CMe)(2-MeO-6-MeC6H3)N=CMe)C5H3N] 

(MeOPDI) compound and will be discussed in greater detail. 
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2.5 Synthesis and Characterization of MeOPDI Ligand 

 

 The synthesis of the MeOPDI ligand started with the commercially available chemicals, 

diacetylpyridine and 2,6-diisopropyl aniline. These starting materials were mixed (in a 1:1 

mole ratio) together and dissolved in methanol. Formic acid was then added under an ice 

bath, to catalyze the Schiff base condensation reaction. After 1 hour of stirring in an ice 

bath, the solution was placed in the refrigerator for 2 days to yield yellow precipitates of 

compound 1, [(2,6-iPrC6H3N=CMe)(O=CMe)C5H3N] (MeOPDI) (eq. 5).19 The work-up involved 

filtering the yellow solid of 1 through a buchner funnel and washing with dry methanol, to 

obtain an 80% yield of 1. 

 

 

  

 Infrared (IR) and nuclear magnetic resonance (NMR) analysis of compound 1 

confirmed the identity. IR displayed a carbonyl (C=O) stretching frequency at 1698 cm-1 and 

an imine (C=N) stretching frequency at 1647 cm-1, owing to the Schiff based reaction (Figure 

2.4) 
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Figure 2.4. IR spectrum of compound 1. Highlighting the C=O and C=N stretching 
frequencies. 
 

 The 1H NMR showed the appearance of a septet at 2.69 ppm, with an integration of 

2 protons (Figure 2.5). This resonance was due to the protons from the isopropyl group, 

which suggested the completion of the Schiff based reaction. Furthermore, the aromatic 

protons from the 2,6-diisopropyl aryl group were shown at 7.15 ppm (meta positioned 

protons) and 7.09 ppm (para positioned protons).  
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Figure 2.5. 1H NMR spectrum of compound 1. 500 MHz, CDCl3. 

 

 The ligand [(2,6-iPrC6H3)N=CMe)(2-MeO-6-MeC6H3)N=CMe)C5H3N] (MeOPDI) (2) was 

also synthesized via a Schiff base condensation, with starting materials [(2,6-

iPrC6H3N=CMe)(O=CMe)C5H3N] and 2-methoxy-6-methylaniline in a Dean-Stark apparatus. 

The color changed from a pale yellow as a result of [(2,6iPrC6H3N=CMe)(O=CMe)C5H3N], to a 

dark yellow of 2 (eq 6). Water was also collected in the Dean-Stark trap to confirm the 

condensation reaction. Purification of 2 involved periodic wash with acetone, to remove the 

minor products of the reaction (2,6-diacetylpyridine and the double addition of 2,6-

diisopropyl aniline).  



www.manaraa.com

39 
 

 

  

 IR and 1H NMR spectroscopy confirmed the structure of 2. In the IR spectrum, the 

disappearance of the C=O stretching frequency at 1698 cm-1 is prominently noted, owing to 

the completion of the Schiff based reaction (Figure 2.6). Only the C=N stretching frequency 

at 1641 cm-1 is present, due to both C=N, from the 2,6-diisopropyl and 2-methoxy-6-methyl 

aryl groups. 
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Figure 2.6. IR spectrum of compound 2. Highlighting the C=N stretching frequency. 
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 The 1H NMR showed the appearance of two singlet resonances at 3.76 and 2.09 

ppm. These resonances corresponded to the protons of the methoxy and methyl group, 

respectively, off of the meta position on the 2-methoxy-6-methyl aryl group. The integration 

displayed 3 protons for each resonance. Furthermore, the aromatic protons from the 2-

methoxy-6-methyl aryl group are shown at 7.01 (para), 6.87 (meta) and 6.83 (meta) ppm 

(Figure 2.7). 

 

 

Figure 2.7. 1H NMR spectrum of compound 2. 500 MHz, CD2Cl2. 

 

 Compound 2 is highly conjugated and redox active; similar to other PDI ligands.15 

Electrochemical studies confirmed 2 as an electron reservoir, owing to the fact that 2 

electrons can be held within the highly conjugated system, to create a diradical dianionic 
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species of 2 (Scheme 2.9). The electron is likely delocalized throughout the conjugated 

system; therefore the dot (which represents an electron) can be positioned elsewhere 

within the MeOPDI ligand.22 

 

 

Scheme 2.9. Compound 2 can hold up to 2 electrons within its highly conjugated system. 

 

 Cyclic voltammetry (CV) studies of compound 2 (0.1 M) in tetrahydrofuran with 

ammonium hexafluorophosphate electrolytes (1 M) showed the two electron reduction 

events of 2 at -1.08 and – 1.63 V, and two electron oxidation events at -0.498 V and -1.26 V 

(Figure 2.8). The voltage split is beyond the reversible value of 59 mV, however, the general 

shape and stability of 2 after 25 scans support a quasi-reversible status. Lastly, a third 

oxidation event at 0.68 V suggests compound 2 can undergo an oxidation event, starting 

from the neutral state, similar to Soper’s bis-iminophenolate ligand.12 
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Figure 2.8. Cyclic voltammogram of compound 2, with a scan rate of 100 mV/sec and a total 
of 25 scans.   
 

 The CV study provided evidence of the redox capabilities of 2, similar to other well 

defined PDI ligands.15 Similarly to other PDI ligands, 2 can store the 2 electrons required for 

the reduction of CO2 to CO. However, CO2 requires a binding site before electrons can 

transfer. Therefore, the next step before reactivity with CO2 molecules is the insertion of 

the Fe metal within the binding pocket of compound 2. 
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Chapter 3. CO2-to-CO Conversion 

 

 

3.1 Binding of CO2  

 

 Although the reduction of CO2 by transition metal catalysts is in many ways nascent, 

the field has gained more attention as well as importance over the past forty years. It was in 

1975 that Aresta and Nobile first ascertained that CO2 activation by transition metal 

complexes was possible, via the crystal structure of a CO2 bound (Cy3P)2Ni complex. It was 

reported in the crystal structure that an 2-bidentate binding mode is involved in the 

carbon and oxygen atom of CO2, with significant bending (Figure 3.1).1 This discovery 

suggested that the large enthalpy associated with that of the C=O double bond in CO2 (532 

kJ/mol), can be activated, and ultimately lead to reduction.2 Since that discovery, various 

CO2 binding modes have been observed (Table 3.1). 

 

 

Figure 3.1. Reaction involving the insertion of CO2 gas into a Ni(0)  center, affording the first 
reported crystal structure of CO2 activation by a transition metal complex.1 
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Table 3.1. Modes of bonding CO2 to metal centers 

Bonding Modes Structural Features of the Adduct Observed in Metal [Ref] 


1-O  

U3 


1-C 

 

Rh4, Ir5 


2-C,O 

 

Ni6, Rh7, Fe8, Pd9 

µ2-2 

 

Pt10, Ir/Zr11, Ir/Os12, Rh13, 

Ru14 

µ2-3 (class I) 

 

Re/Zr15, Ru/Zr16, Ru/Ti16, 

Fe/Zr16, Fe/Ti17 

µ2-3 (class II) 

 

Re/Sn18, Fe/Sn19 

µ3-3 

 

Os20, Re21 

µ3-4 

 

Co22 

µ4-4 

 

Ru23 
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3.2 Breakdown of CO2 (Electrochemically) 

 

 A series of studies involving various other metal catalysts ensued shortly thereafter, 

regarding the electrocatalytic reduction of CO2 to CO, primarily employing highly expensive 

and low abundant metals such as Ru and Pd. In 1987, Tanaka and coworkers used the 

bipyridine complexes of Ru, (bipy)2Ru(II)(CO)2 to electro-catalytically reduce CO2 to CO.24 

The (bipy)2Ru(II)(CO)2 complex displayed a reduction potential of CO2 at -1.40 V vs. SCE, 

which is 0.5 V less than the one electron reduction of CO2 (without a catalyst). According to 

Tanaka’s mechanism, a two electron reduction of the complex displaced one CO from the 

Ru, to form a five coordinate neutral complex. In the presence of CO2, the neutral complex 

forms an 1-CO2 adduct of Ru(0). The addition of protons from the acidic solution (pH 6.0) 

produce a H2O molecule and regenerate the catalyst, (bipy)2Ru(II)(CO)2 (Scheme 3.1). 

 



www.manaraa.com

47 
 

 
 
Scheme 3.1. Tanaka and coworkers’ catalytic reduction of CO2 to CO with a 
(bipy)2Ru(II)(CO)2 complex.24 
 

 Also, Dubois and coworkers have shown extensive studies of CO2 reduction to CO on 

polydentate phosphine Pd complexes.25-27 The starting, Pd(II) complex gains an electron to 

form a Pd(I) intermediate, which then binds CO2 to form the five-coordinate CO2 adduct. 

Upon transfer of the second electron, the Pd(0) intermediate dissociates the solvent 

(acetonitrile) and protonation (from acidic solution) of one of the O atom of the 

coordinated CO2 affords the metallo-carboxylic acid intermediate, Pd-COOH. Another 

protonation occurs to form a dihydroxy carbene intermediate, and through the dehydration 

of the dihydroxy carbene, CO is released. Acetonitrile once again binds to the open site of 

Pd, to regenerate the catalyst (Scheme 3.2). 
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Scheme 3.2. Dubois and coworkers catalytic reduction of CO2 to CO on a polydentate 
phosphine Pd complex.25 

 

 Fe, the most abundant metal on Earth, has also been utilized for the reductive 

cleavage of CO2 to CO and O2-. This was demonstrated electrochemically in 1991 by Savéant 

and coworkers by means of an Fe(0) porphyrin; however the porphyrin ring degraded after 

several catalytic cycles, due to carboxylation or hydrogenation of the ring.28 Other notable 

electro-catalytic Fe complexes include Fe(I) corroles29, 19-electron Fe Cp complexes30, and 

Fe(I) complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline.31 However, for a fair 

comparison to the work presented within this thesis, chemical studies (electrons derived 

from chemical reductants) on the reduction of CO2 to CO must be compared. 
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3.3 Breakdown of CO2 (Chemically) 

 

 Fe(I) complexes have shown to chemically reduce CO2 to CO, as shown 

independently by Holland and Peters. Holland and coworkers have reported the reductive 

disproportionation of CO2 to CO and carbonate (CO3
2-) with a LtBu = 2,2,6,6-tetramethyl-3,5-

bis [(2,6-diisopropylphenyl)imino]hept-4-yl Fe(I) complex.32 The treatment of LtBuFeNNFeLtBu 

with two mole equivalents of dry CO2 in pentane afforded a mixture of the dicarbonyl Fe(I) 

(LtBuFe(CO)2) and the bridging carbonato dimer Fe(II) (LtBuFe(II)(µ-OCO2)-Fe(II)LtBu) complex 

(Scheme 3.3).  

 

 

Scheme 3.3. Holland and coworkers reductive disproportionation of CO2 to CO and CO3
2-.32 
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 Peters and coworkers saw a chemical reduction and coupling of CO2, on a 

tris(phosphine)borate Fe(I) complex.33 Two products were identified, one major product, 

the unprecedented bimetallic µ-carbonyl/µ-oxo (Fe(µ-CO)(µ-O)Fe) complex and the minor 

product, bimetallic oxalate (Fe(µ-2: 2-oxalato)Fe) complex (Figure 3.2). 

 

 

Figure 3.2. Peters and coworkers reductive cleavage of CO2 to CO using a tris(phosphine)-
borate Fe(I) complex.33 

 

 Only one system known in literature, prior to this work, displayed a CO2-to-CO 

reduction on an Fe(II) center. Field and coworkers have shown the reductive 

disproportionation of CO2-to-CO and the bicarbonate anion (HCO3
-).34 The addition of 3 - 4 

atmosphere of CO2 to Fe(dmpe)2H2 (dmpe = 1,2-bis(dimethylphosphino)ethane) at 70 0C 

afforded two products, the iron carbonate Fe(dmpe)2CO3 and the iron carbon monoxide 

bound [Fe(dmpe)2(CO)H][HCO3] with a bicarbonate counter anion (Scheme 3.4). 
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Scheme 3.4. Field and coworkers proposed mechanism for the reductive disproportionation 
of CO2 to CO.34 

 

 The examples shown above employed either reactive hydride (Field) or electron rich 

Fe(I) centers (Holland and Peters) for the reduction of CO2 to CO. As eluded to in chapter 2, 

redox active ligands can confer nobility to first row transition metals, such as Fe, Cu and Zn, 

in order to explore multi-electron transfer reactions with cheaper and more abundant 

metals. Instead of rich electron centers or highly reactive hydrides, redox active ligands can 

assist in the electron transfer reaction needed to complete the reduction of CO2-to-CO. 

Redox active ligands such as the PDI ligand system have been extensively studied by Chirik, 

especially on Fe(II) centers.35,36 Also, it is important to note that all of the CO2 to CO 

reduction cycles shown above are not catalytic. Hence, the PDI Fe(II) system presented 

herein will demonstrate a complete CO2 to CO cycle with the help of the redox-active MeOPDI 

ligand 2.  
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3.4 Metallation of MeOPDI 

 

 The PDI ligand 2 has been shown to be redox active (chapter 2). Now a metal center 

(Fe) must be incorporated within the binding pocket of 2 for the CO2 molecule to bind. A 

solution of 2 in dichrolomethane (DCM) was slowly added to a solution of FeBr2 

(tetrahydrofuran) in a N2 filled glove box to produce a color change from dark yellow to dark 

blue (eq. 7). The solution was allowed to stir for 1 day before filtering through a pipette 

filled with celite, to filter out impurities. The filtered solution was then layered with diethyl 

ether to produce blue single crystals of 3. 

 

 

 

 IR analysis showed the shift in the imine stretching frequency from 1643 cm-1 in 2 to 

1579 cm-1 in 3, due to the dative bond between the imine N and the Fe center (Figure 3.3). 

The new dative bond caused a slight reduction in the imine bond, which lowers the force 

constant and in turn shifts the frequency to a lower wavenumber.  
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Figure 3.3. IR spectrum of 3. 

 

 Due to the paramagnetic nature of 3, the 1H NMR spectrum span from 100 to - 50 

ppm (Figure 3.4). However, the important resonances are assigned from comparing the well 

analyzed PDI FeCl2 complex from Gibbon and coworkers.37 It is important to note, that the 

prominent solvents displayed within the 1H NMR spectrum are from adventitious solvents in 

the N2 glove box, that are used daily.       
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Figure 3.4. 1H NMR spectrum of 3, 500 MHz, CDCl3. 

 

 X-ray crystallographic analysis was also taken of the blue single crystals of 3 (which 

contained two independent molecules in the unit cell). An Oak Ridge Thermal Ellipsoid Plot 

(ORTEP) view of a molecule of 3 is shown in Figure 3.5. The Fe center is five-coordinate with 

a distorted square-pyramidal geometry (average τ = 0.28). A τ value of 1 corresponds to an 

ideal trigonal-bipyramidal geometry, while a τ value of 0 corresponds to an ideal square-

pyramidal geometry.38 The bond lengths and angles are similar to other structurally 

characterized PDIFe(II)  complexes by Chirik and coworkers.39-42 
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Figure 3.5. Solid-state structure (30% probability) of 3. H atoms have been omitted for 
clarity. Selected bond lengths (Å) and angles (deg) for one independent molecule in the unit 
cell: Fe(1)−Br(1) 2.4062(16), Fe(1)−Br(2) 2.5048(16), Fe(1)−N(1) 2.268(8), Fe(1)− N(2) 
2.089(7), Fe(1)−N(3) 2.224(7), C(2)−N(1) 1.308(13), C(8)−N(3) 1.299(11); Br(1)−Fe(1)−Br(2) 
108.38(6), N(2)−Fe(1)−Br(1) 158.3(2), N(1)−Fe(1)−N(3) 140.2(3). 
 

 The measured effective magnetic moment (μeff) of 3 yielded values of 5.49 (in the 

solid state) and 4.89 μB (in solution), with magnetic susceptibility balance and Evan’s 

method NMR measurements, respectively.43 These values are consistent with a high-spin (S 

= 2) square-pyramidal Fe(II) center.39  Another technique that confirms the oxidation state 

of the Fe center is Mössbauer spectroscopy.44 When 3 was analyzed in a room temperature, 

zero-field Mössbauer, the isomer shift (δ) and quadruple splitting parameters are 0.644(9) 

and 1.13(2) mm/s, respectively (Figure 3.6). These values are in agreement with the 

assignment of a high-spin Fe(II) center.42 
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Figure 3.6. Zero-field 57Fe Mössbauer spectrum of 3 recored at room temperature. The 
isomer shift and quadruple splitting parameters are 0.644(9) and 1.13(2) mm/s, 
respectively.  
 

 

3.5 Reduction of MeOPDIFeBr2 (3). 

 

 Once the Fe center is incorporated into the binding pocket of ligand 2 to obtain 

complex 3, the complex must be reduced by two electrons to perform the reduction of CO2-

to-CO. From previously reported data on PDI Fe complex, the two electron reduction of the 

PDIFe(II) complex can be accomplished by the addition of two equivalents of sodium 

triethylborohydride (NaBHEt3) in a N2 filled glove box to obtain a  dinitrogen complex 

(PDI)FeN2.45  As shown in eq. 8, a blue suspension of 3 in either diethyl ether or pentane 

reacts with two equivalents of NaBHEt3 in an N2 filled glove box,  to form the green 

(MeOPDI)FeN2 complex (4). 
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 Multiple attempts to isolate 4 in a crystalline form for solid state characterization 

were unsuccessful, due to degradation (from the removal of solvent or standing in room 

temperature for two hours). Therefore, complex 4 was unambiguously characterized in 

solution. As shown in Figure 3.7, the liquid Fourier Transform (FT) IR spectrum of 4 in 

pentane displayed a single bound N2 stretch at 2045 cm-1, which is not normally seen if N2 is 

not bound because of the non-net dipole moment of N2 gas. Also, the appearance of two N2 

molecules bound to Fe is shown at 2130 and 2071 cm-1, due to previously reported data on 

the equilibrium between mono and bis-N2 Fe complexes.45 
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Figure 3.7. FTIR spectrum of 4 in pentane showing both N2 bound complexes. IR was taken 
in a liquid cell with sodium bromide windows and a 0.1 mm path-length. 
 

 An isotopic study with 15N2 gas confirmed the bound N2 molecule on the Fe center 

by shifting the stretching frequency from 2045 cm-1 in 4(14N2) to 1959 cm-1 in 4(15N2) (Figure 

3.8). Also, the 15N{1H} NMR  spectrum of 4(15N2) in solution with diethyl ether exhibited 

resonances at 113.5 and 104.7 ppm (Figure 3.9). These values fall within the range of 

previously reported reduced PDI dinitrogen complexes by Chirik and coworkers46 and can be 

attributed to Nα and Nβ of the terminally bound 15N2 ligand. 
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Figure 3.8. FTIR spectrum of 4(15N) in diethyl ether showing 15N2 bound complexes. IR was 
taken in a liquid cell with sodium bromide windows and a 0.1 mm path-length. 
 

 

Figure 3.9. 15N{1H} NMR spectrum of  4(15N2), 51 MHz, diethyl ether. 
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3.6 Characterization of MeOPDIFe Complex (Reduced Ligand or Metal) 

 

 Due to the unsuccessful isolation of 4, another route was pursued in order to isolate 

the two electron reduced MeOPDIFe complex, particularly for the proper assignment the Fe 

center’s oxidation state in MeOPDIFe, to prove the redox capability of the MeOPDI ligand when 

coupled with a metal. MeOPDIFe(CO)2 (5) was synthesized and isolated to confirm the 

oxidation state of the Fe center. By exposing a solution of 4 in diethyl ether, to one 

atmosphere of CO, complex 5 was obtained (eq. 9). Note that the color of 5 is identical to 

that of 4, and slow evaporation of diethyl ether in the solution yielded green crystals of 4. 

 

 

 The solid IR of 5 confirmed two CO molecules bound to the Fe center, with 

stretching frequencies at 1947 and 1883 cm-1 (Figure 3.10). These values were identical with 

those of PDIFe(CO)2 complexes from Chirik and coworkers, best described as having 

diradical dianionic ligands with an S equal to zero, Fe(II) center.47 
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Figure 3.10. Solid FTIR of complex 5. 

 

 Complex 5 is also diamagnetic, in both the solid state and in solution. Therefore, 

clean 1H and 13C{1H} NMR spectra of 5 were obtained (Figure 3.11 & 3.12). The 13C{1H} NMR 

spectrum display the CO bound molecule at 216 ppm. The other CO bound molecule is not 

seen, due to the sensitivity of the 13C NMR.  
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Figure 3.11. 1H NMR spectrum of 5, 500 MHz, CD2Cl2. 

 

Figure 3.12. 13C{1H} NMR spectrum of 5, 126 MHz, CDCl3. 
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 Recent computational studies of similar (iPrPDI)Fe(CO)2 have shown that an Fe(0) d8 

electronic description can also be an appropriate configuration, therefore, the electronic 

structure may in fact be a hybrid of the Fe(0) and Fe(II) resonance forms.48 An Fe(II) with a 

diradical dianion ligand is a good description of complex 5 because of the crystallographic 

and Mössbauer data. A detailed ORTEP view of 5 (shown in Figure 3.13), depicts the Fe 

center having a five-coordinate, square-pyramidal geometry (τ = 0.06). Due to the electrons 

residing within the MeOPDI ligand, the bond order of the C=N bond is likely decreased and is 

displayed in the elongation of the Cimine–Nimine bonds from a value of 1.299(9) and 1.204(7) Å 

(average of both independent molecules) in 3 to 1.337(3) and 1.314(3) Å in 5. The 

contraction of the Cimine–Cipso (C from phenyl ring) bonds is also seen, from 1.467(9) and 

1.489(9) Å in 3 to 1.412(3) and 1.427(3) Å in 5. This data, taken in conjunction with the room 

temperature, zero-field Mössbauer parameters [(ΔEQ = 1.13(1); δ = −0.025(6) mm/s)], 

suggest that complex 5 is best described as an Fe(II) center with a doubly reduced MeOPDI 

ligand. This is surprising because the metal center is historically the electron acceptor in the 

presence of a reductant, not the organic scaffold surrounding it.49   
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Figure 3.13. Solid-state structure (30% probability) of 5 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (deg): Fe(1)−C(1) 1.774(2), Fe(1)−C(2) 
1.784(2), Fe(1)−N(1) 1.9458(16), Fe(1)−N(2) 1.8526(17), Fe(1)−N(3) 1.9482(17), C(4)−N(1) 
1.337(3), C(10)−N(3) 1.314(3); C(1)−Fe(1)−C(2) 96.00(10), N(2)−Fe(1)−C(2) 156.29(9), 
N(1)−Fe(1)−N(3) 152.48(7). Zero-field Mössbauer spectrum of 5 (right). 
 

 

3.7 Breakdown of CO2 to CO on Reduced MeOPDI Fe(II) Complex 

 

 With evidence of the liable N2 Fe complex 4, CO2 was introduced for the observation 

of the two electron reduction of CO2-to-CO. Complex 4 was formed in situ in diethyl ether 

from two equivalents of NaBHEt3. Once all of the hydride was consumed, the solution was 

filtered and charged with one atmosphere of CO2, immediately turning brown and then 

back to green, with subsequent formation of a purple precipitate over six hours (eq. 10). 
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 Spectroscopic analysis of the isolated green solution was revealed complex to be 5. 

In order to determine if the CO molecules are derived from CO2 and not adventitious CO gas 

in the N2 filled glove box or the CO2 gas tank, an isotopic study with 13CO2 gas was 

employed. Complex 4 was once again formed in situ in diethyl ether from two equivalents 

of NaBHEt3, and within half an hour, the solution was filtered into a J-Young NMR tube. The 

NMR tube was charged with 13CO2 gas and a 13C{1H} NMR was taken. The 13C{1H} NMR 

spectrum revealed a resonance at 214 ppm, which is 2 ppm off of the isolated complex 5 

from the CO reaction (Figure 3.14).  
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Figure 3.14. 13C{1H} NMR spectrum of a solution of 4 exposed to 13CO2 gas to generate 
5(13CO)2, 126 MHz, toluene-d8. 
  

 The solution of 4 exposed to 13CO2 gas in the J-Young NMR tube was then pipetted 

into a liquid IR cell. The liquid IR spectrum showed the shift in the two CO bound molecules 

from 1974 and 1914 cm-1 in 5(12CO)2 to 1923 and 1868 cm-1 5(13CO)2 (Figure 3.15). The 

shifted values are within the calculated values of 1935 and 1876 cm-1 when exchanging 13C 

for 12C in the CO stretching frequency. 
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Figure 3.15. Overlay liquid IR spectra of 5(12CO)2 and 5(13CO)2. 

 

 

3.8 Oxygen Acceptors 

 

 With two CO molecules bound to the Fe center, there posed the question of the two 

remaining oxygen atoms from the two CO2 reacted molecules. It was hypothesized that the 

two remaining oxygen atoms reside in the purple solid product. However, attempts to 

isolate the purple solid was unsuccessful, owing to the degradation of the purple solid 

within an hour standing in room temperature and up to four hours at -35 oC. Therefore, an 

oxygen atom acceptor such as bis-diethylphosinoethane (DEPE) and Trimethylsilyl chloride 

(TMSCl) was employed to trap the missing oxygen, in order to elucidate the stoichiometry.  

 

 A blue suspension of 4 in either diethyl ether or pentane was reacted with two 

equivalents of NaBEt3H in a N2 filled glove box for half an hour, followed by filtration 
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through a glass pipette plugged with glass wool and celite. Then, one equivalent of DEPE 

was added drop-wise, and a color change from green to red-brown was observed.45 The 

reaction was allowed to stir for one hour, before filtering. A concentrated solution in a 

minimal amount of pentane (3 mL) was stored at -35 oC to furnish black crystals identified 

as MeOPDIFeDEPE (6). 

 

 

  

 An ORTEP view of 6 is shown in Figure 3.16. The Fe center is a five-coordinate, semi-

square-pyramidal/trigonal bypyrimidal geometry (τ = 0.45). The Cimine–Nimine bonds are 

elongated from a value of 1.299(9) and 1.204(7) Å (average of both independent molecules) 

in 3 to 1.359(3) and 1.356(3) Å in 6. The Cimine–Cipso bonds are contracted from 1.467(9) and 

1.489(9) Å in 3 to 1.408(3) and 1.407(3) Å in 6. 



www.manaraa.com

69 
 

 

Figure 3.16. Solid-state structure (30% probability) of 6. H atoms have been omitted for 
clarity. Selected bond lengths (Å) and angles (deg): Fe(1)−P(1) 2.249(2), Fe(1)−P(2) 2.224(5), 
Fe(1)−N(1) 1.952(8), Fe(1)−N(2) 1.860(6), Fe(1)−N(3) 1.992(2), C(2)−N(1) 1.359(3), C(8)−N(3) 
1.356(3); P(1)−Fe(1)−P(2) 86.29(3), N(2)−Fe(1)−P(1) 175.58(6), N(1)−Fe(1)−N(3) 148.63(8). 
 

 Crystals of 6 were then dissolved in diethyl ether and pipetted into a pressurized 

tube to be charged with one atmosphere of CO2. The color changed from black to brown 

within minutes and finally green after an hour, without any noticeable purple solid (eq. 12). 

The thought behind this experiment was to scrub out the oxygen atom from CO2 with 

phosphine atoms in DEPE, which was originally presumed to bind to the Fe in MeOPDIFe to 

produce the purple solid. Through IR analysis, the green product matched previously to the 

characterized 5, however, the oxidized DEPE product was not observed. Further attempts to 

produce more 5 to repeat the reaction with CO2, for further spectroscopic analysis using 

NMR and liquid chromatography mass spectrometry (LCMS) were unsuccessful. 
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 TMSCl, an external oxygen atom acceptor was then utilized. The complex 4 was 

formed in situ in diethyl ether from two equivalents of NaBHEt3H. Once all of the hydride 

was consumed (indicated by 11B{1H} NMR spectrum (Figure 3.17)) the solution was filtered 

and four equivalents of TMSCl and tetramethylsilane (TMS, as an internal standard) were 

added to the solution. The solution was charged with one atmosphere of CO2, immediately 

turning brown and then back to green, with subsequent formation of a blue precipitate over 

six hours (eq. 13). 
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Figure 3.17. 11B{1H} NMR spectrum of 4 after filtration through a pipette plugged with glass 
wool and celite. 160 MHz, diethyl ether. The resonance at 86.68 ppm corresponds to BEt3, 
which was derived from the complete reduction of 4 with two equivalents of NaBHEt3. 
 

 Analysis of the paramagnetic blue precipitate revealed the (MeOPDI)FeCl2 complex 7, 

which is the dichloride of the starting material (3). The IR and 1H NMR spectra of 7 

resembles that of complex 3, with the C=N stretching frequency at 1581 cm-1 and 

resonances spanning 100 to - 50 ppm, respectively (Figure 3.18 & 3.19). Once again, the 

assignment of the 1H NMR of 7 was  compared to well characterized PDI FeCl2 complex from 

Gibbon and coworkers.42 Also, the prominent solvents displayed within the 1H NMR 

spectrum are from adventitious solvents in the N2 glove box.       

 



www.manaraa.com

72 
 

3500 3000 2500 2000 1500 1000

80

90

100

1
5
8
1

%
 T

ra
n

s
m

it
ta

n
c
e

Wavenumber (cm
-1
)  

Figure 3.18. Solid FT-ATR infrared spectrum of 7. 

 

Figure 3.19. 1H NMR spectrum of 7, 500 MHz, CDCl3. 
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 Blue single crystals of 7 were acquired by layering diethyl ether into a solution of 7 in 

methanol. An ORTEP view of 7 is shown in Figure 3.20. The Fe center is a five-coordinate 

with square-pyramidal geometry (τ = 0.12). The bond lengths and angles are similar to 3. 

The measured effective magnetic moment (μeff) of 5.58 (solid) and 4.94 μB (solution) are 

consistent with a high-spin (S = 2) Fe(II) center. At room temperature, the zero-field 

Mössbauer parameters were also similar to 3, which is characterized as a high-spin Fe(II) 

center (ΔEQ = 0.88(2); δ = 0.677(9) mm/s) with a neutral MeOPDI ligand (Figure 3.20). 

 

 

Figure 3.20. Solid-state structure (30% probability) of 7 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (deg) for one independent molecule in the 
unit cell: Fe(1)−Cl(1) 2.270(2), Fe(1)−Cl(2) 2.332(3), Fe(1)−N(1) 2.207(2), Fe(1)− N(2) 
2.104(2), Fe(1)−N(3) 2.215(2), C(2)−N(1) 1.284(3), C(8)−N(3) 1.284(4); Cl(1)−Fe(1)−Cl(2) 
110.14(3), N(2)−Fe(1)−Cl(1) 150.53(6), N(1)−Fe(1)−N(3) 143.27(9). Zero-field Mössbauer 
spectrum of 7 (right). 
 

 29Si{1H} NMR analysis of the green solution revealed the remaining oxygen atoms 

from CO2 in the molecule trimethylsilyl oxide (TMS-O-TMS) in a molar ratio of 1:2 (Figure 

3.21). The 29Si{1H} NMR spectrum, prior to the introduction of CO2 showed virtually all 
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TMSCl at 29.9 ppm, relative to an internal standard, TMS. After the addition of CO2, the 

TMSCl resonance disappeared and a new resonance at 6.87 ppm appeared, relative to TMS, 

corresponding to bis-trimethylsilyl oxide (TMS-O-TMS). 

   

 

Figure 3.21. The 29Si{1H} NMR spectra of the before and after CO2 reduction, where TMSCl is 
consumed and oxidized to form TMS-O-TMS. 
  

 It is important to note, the reduction of CO2 to CO is done under room temperature. 

The MeOPDI ligand helped supply the electrons needed to reduce CO2, while the Fe center 

binds the CO2 molecule, in order for electrons to reduce CO2. Throughout the reduction 

process, the ferrous state of the Fe center is conserved. Another example of the reductive 

cleavage of CO2 to CO is realized on Fe(II), but this time, employing redox active ligands.14 
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3.9 Proposed Mechanism for the Binding and Breakdown of CO2 to CO 

  

 The binding mode of CO2 on the Fe center of the MeOPDIFe complex is under 

investigation, along with the mechanism. Several points can be proposed based off of the 

example of Chirik’s developed mechanism of cycloaddition of dienes.35 As shown in Scheme 

2.6, the diene substrate binds end-on (through the π bond of the diene) to the Fe center of 

the iprPDIFe(II) complex. The d-orbitals of the Fe overlap with the p-orbitals of the diene, 

long enough for electrons to transfer. CO2 also has double bonds that can possibly bind to 

the Fe center of MeOPDIFe complex in the same fashion. Therefore, CO2 is proposed to bind 

in an end-on mode, long enough for a two electron transfer to the CO2 molecule to be 

reduced to CO. The CO molecule is released and ultimately reacts with complex 4 to 

produce complex 5. The oxygen atom from CO2, thought to be bound to the neutral 

MeOPDIFe complex, creates a proposed highly reactive bridging bis-µ2-oxo Fe dimer 

(MeOPDIFeO2
4-FeMeOPDI). This proposed highly reactive MeOPDIFeO2

4-FeMeOPDI complex can 

potentially be stabilized by the surrounding CO2 molecules, to create a quasi-stable µ2-

dicarbonate Fe dimer, which may be the purple species. The addition of TMSCl produces the 

highly stable Si-O bond, which forms the TMS-O-TMS molecules. The Cl- ions can then bind 

to the neutral MeOPDIFe complex to form the dichloride of the starting material. However, 

this mechanism is purely speculative at this point and further experiments are currently 

underway.  
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Figure 3.22. Proposed mechanism for the conversion of CO2-to-CO on MeOPDIFe(II) 
complex.35,36 
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Chapter 4. CO Release 

 

 

4.1 Fe-CO Bond 

 

 There are several notable examples of strong metal carbonyl bonds in inorganic 

chemistry and in nature; however, one of the most remarkable and physiologically 

significant examples can be found in the CO poisoning of our blood.1 Our blood cells contain 

a metalloprotein called hemoglobin. This iron-containing oxygen-transporter carries the O2 

that is necessary for respiration from our lungs and deposits this O2 to the tissues 

throughout our body.2 Hemoglobin is composed of four polypeptide chains, each containing 

a heme group and one Fe ion (Protein Database #PDI1YVT ) (Figure 4.1). Fe(II) is the site of 

O2 binding, therefore, hemoglobin is capable of binding to a total of four O2 molecules. 

When O2 binds to one of the Fe centers, the Fe ion moves back towards the center of the 

plane of the porphyrin ring due to the oxidation to Fe(III), which induces a conformational 

change of the rest of the protein. This conformational change in the other heme sites can 

then allow binding of O2 molecules in an easier and cooperative manner.  In the presence of 

CO, however, the binding of O2 to hemoglobin is hindered, due to hemoglobin’s high 

binding affinity for CO (250 times greater than O2).3 
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Figure 4.1. Crystal structure of CO bound hemoglobin (PDI1YVT).  

 

 The binding of CO to Fe in all complexes can be attributed to the surrounding ligand 

environment of the Fe center. In an Fe(II) center, the geometry and coordination number of 

the Fe complex play an important role in the binding/non-binding of CO molecules.4  With 

respect to steric effects, the binding of CO can be seen in the four coordinate iron(II) 

diazadiene ((iPr-DAB)FeI2) complex to form the octahedral CO bound Fe(II) species.5  

However, in an almost similar four coordinate iron(II) phosphine ((PtBu2Me)FeCl2) complex, 

the addition of CO was not observed. This difference is observed because the bulky tert-

butyl group off of the phosphine hinders CO binding, despite the open coordination sites on 

Fe(II) (Scheme 4.1).6 The overall field strength of the ligand also governs CO binding. Strong 

field ligands on Fe(II) will provide an easier binding mode for CO, while weak field ligands 

hinder the process.4 The binding of CO onto Fe(II) with strong field ligands can be explained 

by the ligands stabilization of the low-spin (stable) complex.4  
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Scheme 4.1. Steric affects CO binding to the unsaturated Fe(II) complex.5,6 

 

 The ligand plays a big role in not only stabilizing the metal, but also in altering the d-

orbital electron density of the metal when binding to CO.4 CO can interact with metals such 

as Fe, through dative bonds. CO is considered a σ-donor ligand, therefore it has directional 

p-orbitals that overlap with the dz
2-orbitals of Fe (Figure 4.2). Subsequently, another 

interaction occurs through a π-backbonding event in which orbitals overlap from the anti-

bonding p-orbitals of CO and the bonding d-orbitals of Fe.  

 

 

Figure 4.2. Orbital overlap in Fe-CO bonds. 
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4.2 Application of CO release 

 

 Due to the surprisingly beneficial effect of CO on our tissues and organs, particularly 

in response to oxidative stress, efforts have increased for the study of CO release from 

metals.7 The development of solid storage forms for CO that are safe to handle and from 

which the CO can be released by specific trigger, is a rich subset of chemistry called CO 

releasing molecules (CORMs).8-11 A number of metal-carbonyl complexes have been 

identified as CORMs that can trigger CO release by photo-activation (Scheme 4.2).12,13 The 

most thoroughly studied CO releasing complex is the Rutheium(III) [(glycinate)Ru(CO)3Cl] 

with three CO bound molecules.14 However, the complex can only display a half life time of 

3.6 minutes in human plasma which is not long enough to reach the specific targeted 

organ.14 Therefore, more stable metal complexes must be explored if this field is likely to 

thrive in the fast growing competitive market. Solutions to bypass this problem include 

employing the use of a cheap Fe centered complex as well as altering the design of the 

ligand (for CO stabilization). 
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Scheme 4.2. Photo-activated CO release on Aust and Motterlini’s metal complexes.12,13 

 

 

4.3 Five-Coordinate CO bound Fe Complexes 

 

 Within this thesis, a tridentate ligand (PDI) Fe(II) complex with the bound CO 

molecules is reported as a product of the capture of CO gas (derived from CO2). Examples of 

another five-coordinate carbonyl Fe complex were reported by Caulton and coworkers in 

2008. They reported the reaction of a three-coordinate Fe(I) complex, [(PNP)Fe], with one 

atmosphere of CO, to yield a square-pyramidal dicarbonyl complex. One of the CO group in 

the apical position and the second one, trans to the central N atom of the PNP ligand 

(Scheme 4.3). However, CO coordination in this system proved to be irreversible and CO 
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could not be removed under vaccum.15 Holland and coworkers also synthesized a five-

coordinate Fe complex bearing a bulky bidentate β-diketiminate ligand that coordinated 

three CO molecules to form a square-pyramidal geometry (Scheme 4.3).16 Once again, this 

system did not display reversible binding of CO on Fe.   

 

 

Scheme 4.3. Five coordinate CO bound Fe complexes that cannot reversibly bind CO 

molecules. 

 

 

4.4 CO Binding Conditions (HOMO-LUMO Gap vs. Pairing Energy) 

 

 The MeOPDI ligand employed within this thesis also constrains the Fe center (in 

MeOPDIFe(CO)2) to a square pyramidal geometry when two CO molecules are bound. As 

mentioned in chapter 3, the PDI ligand is redox active, and only in the reduced form, can CO 
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bind to the Fe center. This can be explained by the spin state (number of unpaired 

electrons, S) change of the PDIFe complex, when in the reduced form versus the neutral 

form. A spin allowed transition from high spin to low spin must occur for stable CO binding. 

The spin state of a complex is determined by comparing the energy difference (HOMO-

LUMO gap, ΔE) and the pairing energy (energy of pairing two electrons, PE). The ΔE must be 

greater than PE, in order for stable CO binding, and the ΔE is affected by the ligand 

environment (Figure 4.3).4 Chirik has written numerous reports on the spin state change of 

the PDI Fe complex (from S = 2 to S = 0) when CO binds.17,35,38,39 Therefore, a switch can be 

envisioned, where the spin state change (due to the reduction of the ligand) can control the 

binding of CO molecules. 

 

 

Figure 4.3. Energy profile of the binding and non-binding conditions of CO to unsaturated 
complex.4 
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4.5 Comparing other CO bound Fe complexes (derived from CO2) 

 

 The CO release step, coupled with the CO2 reduction from chapter 3, can ultimately 

produce CO gas for the FT process. Fe complexes that produced CO molecules from the 

reduction of CO2 gas have been reported; however, the release of CO gas to complete the 

CO2-to-CO cycle was not observed.  

 

 Holland has shown three different products from the reaction of CO2 with a bridging 

dinitrogen Fe(I) complex, (LtBuFeNNFeLtBu), (LtBu = 2,2,6,6-tetramethyl-3,5-bis[(2,6-

diisopropylphenyl)imino]hept-4-yl). The dicarbonyl Fe complex was the major product 

(Scheme 4.4).15 Meanwhile, Peters and coworkers have also shown that the 

tris(phosphine)borate Fe(I) complex, [PhBPCH2Cy3]FeH, can react with CO2 to produce three 

products, with a bridging µ-oxo and µ-carbonyl Fe complex as the major product (Scheme 

4.4).18 However, both of these complexes utilized Fe(I) center for the CO2 to CO reduction. 

Fe(II) complexes are more rare in literature for the reduction of CO2 to CO due to the 

insufficient amount of electrons required for this process. The only known Fe(II) complex 

that can reduce CO2-to-CO, prior to this work, was Field’s Fe(dmpe)H2 complex, (dmpe = 1,2-

bis(dimethylphosphino)ethane). This complex produced a CO bound Fe complex, 

Fe(dmpe)(CO)H, and the bicarbonate counter anion (Scheme 4.4).19 The three reactions 

summarized above can be found in greater detail in chapter 3 (3.3. Breaking down CO2 

(Chemically)). It is also important to note that the three reactions did not release the CO 
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molecule that was derived from the reduction of CO2, which sets the work presented herein 

noteworthy. 

 

 

Scheme 4.4. Notable Fe(I) and Fe(II) complexes that can breakdown CO2 to CO.13,18,19   

 

 Herein, the release of CO gas upon the oxidation of the reduced redox active 

MeOPDIFe complex is described. In addition, when an oxidant such as hydrochloric (HCl) is 

used, hydrogen gas (H2) can also be produced. These two gases (CO and H2) are important 

for the FT process, as described in chapter 1. This chapter will discuss the CO release step of 

MeOPDIFe(CO)2
 complex, chemically and electro-chemically, along with various acid/base 

substituted PDIFe(CO)2 complexes that affect the redox potential of the CO release step.  
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4.6 CO Release (Chemical Oxidation) 

 

 When two equivalents of a chemical oxidant, such as HCl (1.0 M in diethyl ether), 

was added to the solution of 5, product 7 precipitated out of solution (diethyl ether 

solution). CO and H2 gas were also produced (eq. 14). Within two hours, the reaction noted 

as was complete as indicated by the formation of blue solid (7) surrounding the walls of the 

reaction vessel, and the absence of the green color of 5.  

 

 

  

 The CO and H2 gases were verified by gas chromatography (GC). A set of standards 

were made from the introduction of known amounts of CO and H2 gas (from a purified CO 

and H2 gas tank) (Figure 4.4). Using the calibration curve, the amounts of CO and H2 gas 

produced from the oxidation reaction were determined. However, due to the solubility of 

CO and H2 gas within the diethyl ether solvent, a lower than expected value was obtained.20 

The CO and H2 gas was measured in area counts, which were then converted to volume 

using the calibration curve. The gas law, PV = nRT, was then employed to calculate the 

moles of CO (0.0277 mmol) and H2 (below quantification limits) gases within the headspace 

of the reaction vessel (Figure 4.5). 
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Figure 4.4. H2 (left) and CO (right) gas calibration curve for the oxidation reaction of 5 with 
two equivalents of HCl. 

 

Figure 4.5. Gas Chromatographs of the headspace of the reaction vessel. The area of H2 was 
calculated to be 5.9896 counts at a retention time of 1.38 sec from a 0.5 mL injection of a 
10 mL headspace. The area of CO was calculated to be 20.0772 counts at a retention time of 
240 sec from a 0.1 mL injection of a 10 mL headspace.    
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 The GC data indicated a quarter of the CO gas was release, when compared to the 

theoretical value. This corresponded to 0.0579 mmol of CO molecules (with 0.152 mmol of 

reactant). The lower detected value can be attributed to the CO molecule dissolving in 10 

mL of diethyl ether solvent as well as the incomplete oxidation reaction which produces the 

partially oxidized product (one electron reduced MeOPDI ligand with both CO still bound to 

the Fe center).18 The partially oxidized product is bluish green and is detected by CO 

stretching frequencies, which are shifted from 1947 and 1883 cm-1 in 5 to 2075 and 2036 

cm-1 (Figure 4.6). The partially oxidized product has an Fe(I) center with neutral a MeOPDI 

ligand, rather than an Fe(II) center in the previously observed MeOPDIFe complexes.38 

Therefore the Fe-CO bond is diminished and the stronger C-O stretching frequency 

observed. 
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Figure 4.6. Overlay of infrared spectra of 7 and the partially oxidized product of 5. The red 
line is the spectrum of independently synthesized 7 and the blue line is the product from 
the chemical oxidation of 5. 
  

 5 must undergo a two electron oxidation in order to release the CO molecules. This 

can be explained by the spin state change that is required for CO to release. The complete 

oxidation of 5 (S = 0) produced the neutral form of the MeOPDIFe complex, with halide 

anions, corresponding to S = 2. The pairing energy in the neutral form of the MeOPDIFe 

complex is likely higher than ΔE, which does not meet the conditions for CO binding (Figure 

4.7). These data prompted electrochemical oxidation studies in order to gain further 

insights into the reduction-oxidation (redox) potential of the MeOPDIFe complex, partially in 

respect to the release of CO molecules.   
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Figure 4.7. Molecular orbital diagram of the neutral (left) and reduced (right) form of the 
MeOPDIFe(II) complex. S corresponds to the number of unpaired electrons.17  
 

 

4.7 CO Release (Electrochemical Oxidation)  

 

 In the N2 filled glovebox, a solution of 5 (0.010 M), tetra(n-butyl)ammonium 

hexafluorophosphate (0.100 M) and dichloromethane (DCM) was prepared in a 50 mL three 

neck round bottom. To prevent the oxidation of Fe in the open atmosphere, the round 

bottom was sealed with three rubber septa before it was brought outside the glovebox. The 

cyclic voltammetry (CV) electrodes were then pierced through the rubber septa and quickly 

purged with argon gas, to remove all possible reactive species. After half an hour of purging, 
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the cyclic voltammogram of 5 revealed a quasi-reversible oxidation event at −0.524 V. This 

is believed to be the formation of the partially oxidized 5, [MeOPDIFe(I)(CO)2]+. Also, an 

irreversible oxidation event at 0.477 V was revealed. This is believed to be the complete 

oxidation to the neutral MeOPDIFe, with the concomitant irreversible release of CO (Figure 

4.8). 

 

 

Figure 4.8. CV of 0.01 M 5, 0.1 M [(nBu)4N][PF6] in DCM, 200 mV/s scan rate, glassy carbon 
electrode (scan started at -1.15 V).21 

 

 

4.8 Acid/Base PDIFe Complexes (Electrochemical Oxidation Studies)   

 

 The CO release study was further expanded by incorporating pendant Lewis basic 

sites and/or Lewis acidic in the secondary coordination sphere of the PDI scaffold 

(MeNHPDIFe(CO)2, Me2NPDIFe(CO)2 and BpinPDIFe(CO)2).  The secondary coordination sphere of 

a metal complex is the portion of the ligand that is not directly chelated to the metal.22 
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Recently, Savéant and coworkers have shown electro-catalytic increase in the reduction of 

CO2 to CO on their tetraphenylporphyrin (TPP) Fe complexes by modifying all ortho position 

of the TPP phenyl groups to phenolic groups (Figure 4.9).23 The substituted TPPFe complex 

with phenolic hydroxyls gave a faradaic yield above 90% through 50 million turnovers over 

four hours of electrolysis, with no observed degradation at a low over-potential (0.465 V). 

The basis for the enhanced activity is due to the high local concentrations of the protons 

associated with the phenolic hydroxyl substituents. 

 

 

Figure 4.9. Savéant and coworkers’ methoxy (left) and hydroxyl (right) substituted TPPFe 

complexes. Bottom numbers highlight lower redox (Eo
cat) and over potential () with high 

turnover frequency for the reduction of CO2 to CO with the hydroxyl substituted TPPFe 
complex.23  
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 Pendant boronic ester groups have also recently been shown to stabilize nitrogenase 

intermediates such as N2H3- in a Lewis triad system.24 Previous group members and others 

have also developed complexes with Lewis basic sites in the secondary coordination sphere 

that have proven useful in stabilizing rare intermediates based on the protonation state of 

the amine (Figure 4.10).25-27 

 

 

Figure 4.10. Ortep of [(Hdidpa)FeOH(NCC)][PF6] that displays the use of a pendant amine for 
the intramolecular hydrogen bond stabilization of a rare Fe(II) hydroxo ligand.  
 

 

4.9 Synthesis of Pendant Lewis Acid/Base PDIFeCl2 Complexes 

 

 Three different aniline precursors were chosen for the electrochemical study of the 

CO release steps: N-methyl-1,2-phenylenediamine, N,N-dimethyl-1,2-phenylenediamine,28 

and 2-aminophenylboronic acid pinacol ester. These anilines were chosen to investigate the 



www.manaraa.com

96 
 

effect on the reduction potential of the CO release step of varying the pendant groups from 

Lewis basic (2° and 3°amines) to Lewis acidic (boronic ester) sites.29 The three PDIFe 

complexes were synthesized using the Schiff-base condensation method by mixing together 

an equal mole ratio of 1, FeCl2, and the aniline of choice (Scheme 4.5).30  

 

 

Scheme 4.5. Synthetic scheme for PDIFeCl2 complexes containing pendant Lewis bases and 
Lewis acids 
 

 Within one hour, a distinct color change occurred from a purpled solution of 1 and 

FeCl2 to a dark green solution of MeNHPDIFeCl2 (8), light blue/green of Me2NPDIFeCl2 (9), and 

bright blue of BpinPDIFeCl2 (10). 

 

 Green/black single crystals of 8 were furnished from a layered solution of 8 in DCM 

and diethyl ether, over a period of two days. The Fe center was determined by x-ray 
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crystallography to be five coordinate with a distorted square pyramidal geometry (average τ 

= 0.06) (Figure 4.11, left).31 The N of the MeNHPDI ring and one Cl atom make up the basal 

plane, while the other Cl occupying the apical position. The bond lengths and angles are 

similar to the previously characterized PDIFe complexes, containing asymmetric PDI 

ligands.21,32 The measured µeff yielded a value of 5.11 µB in the solid state and 4.93 µB in 

solution. This is consistent with a high spin (S = 2) square pyramidal Fe(II) center.33 At room 

temperature, the zero-field Mössbauer parameters also confirmed the assignment of a high 

spin Fe(II) center (ΔEQ = 1.06(2), δ = 0.835(7) mm/s) (Figure 4.11, right).34,35  

 

 

Figure 4.11. Solid-state structure (30% probability) of 8 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (o): Fe(1)−Cl(1) 2.3284(8), Fe(1)−Cl(2) 
2.2684(8), Fe(1)−N(1) 2.216(2), Fe(1)− N(2) 2.093(2), Fe(1)−N(3) 2.237(2), C(2)−N(1) 
1.284(3), C(8)−N(3) 1.285(3); Cl(1)−Fe(1)−Cl(2) 112.68(3), N(2)−Fe(1)−Cl(2) 151.78(6), 
N(1)−Fe(1)−N(3) 140.41(8). Zero-field Mössbauer spectrum of 8 (right). 
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 The solid state structure of 8 contains an intramolecular H-bond between the 

secondary amine group and the apical Cl atom. The hydrogen atom was located and 

refined, yielding a N(4)-H(4N)…Cl(1) distance of 2.41(8) Å, and a N(4)…Cl(1) distance of 

3.378(5) Å; consistent with an intramolecular H-bond.36 The N(4)H(4N) group is directed 

toward the Cl atom (the N-H…Cl angle is 163(6)o) which is also indicative of intramolecular 

H-bonding.37 The NH stretching frequency in the solid state IR spectrum is also observed at 

3318 cm-1 (Figure 4.12).  
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Figure 4.12. IR spectrum of 8. The NH and C=N stretching frequencies are displayed at 3389 
and 1585 cm-1, respectively. 
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 Bluish green crystals of 9 were afforded from the layering of diethyl ether into a 

solution of the product in DCM, over a period of two days. An ORTEP view of 9 is shown on 

the left in Figure 4.13. The Fe center was determined to be five coordinate with a distorted 

square pyramidal geometry (average τ = 0.19). As in the case of 8, the bond lengths and 

angles of 9 are similar. The measured µeff of the solid state and in solution were 5.01 and 

4.99 µB, respectively, which is consistent with a high spin (S = 2) square pyramidal Fe(II) 

center. As shown on the right in Figure 4.13, the room temperature, zero-field Mössbauer 

spectrum of 9 which also confirmed the assignment of a high spin Fe(II) center, with a ΔEQ 

and δ of 1.215(4) and 0.840(2) mm/s, respectively. 

 

 

Figure 4.13. Solid-state structure (30% probability) of 9 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (o): Fe(1)−Cl(1) 2.3462(2), Fe(1)−Cl(2) 
2.2417(2), Fe(1)−N(1) 2.195(4), Fe(1)− N(2) 2.068(4), Fe(1)−N(3) 2.185(4), C(2)−N(1) 
1.280(6), C(8)−N(3) 1.274(6); Cl(1)−Fe(1)−Cl(2) 118.73(6), N(2)−Fe(1)−Cl(2) 147.33(1), 
N(1)−Fe(1)−N(3) 143.75(1). Zero-field Mössbauer spectrum of 9 (right). 
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 Synthesis of 10 proved to be the most difficult due to a less prominent color change 

and also the absence of boron in the initial NMR spectroscopic analysis. It was found later 

that the 11B NMR parameters must be tailored for the specific boron sample, and when 

running paramagnetic samples, longer scans are necessary to tease out the board boron 

resonance. After adjustments, the 11B{1H} NMR spectrum displayed a single resonance 

centered at 38.2 ppm, which is consistent with a trigonal planar B center (Figure 4.14). 

 

 

Figure 4.14. 11B{1H} NMR spectrum of 10, 160 MHz, CDCl3. 

 

 Weeks before the 11B NMR detected the boron of the boronic pinacol ester group; 

crystals of 10 were furnished from the slow vapor diffusion of diethyl ether into a saturated 

acetonitrile solution of 10. An ORTEP view of 10 is shown on the left in Figure 4.15. The Fe 

center was determined to be five coordinate with a distorted square pyramidal geometry 

(average τ = 0.05). The N of the PDI ring and one Cl atom make up the basal plane, while the 

other Cl occupy the apical position. As in the case of 8 and 9, the bond lengths and angles 

are similar. The measured µeff in the solid state and in solution yielded values of 4.73 and 
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4.65 µB, respectively. This is consistent with a high spin (S = 2) square pyramidal Fe(II) 

center. As shown on the right in Figure 4.15, the room temperature, zero-field Mössbauer 

spectrum of 10 confirmed the assignment of a high spin Fe(II) center (ΔEQ = 1.23(1), δ = 

0.868(5) mm/s). Further inspection of the ORTEP of 10 shows very little B…Cl interaction 

between the boron in the boronic pinacol ester group and the basal Cl atom.29 The 

B(1)…Cl(2) distance is 3.78(8) Å, which is outside of the Van der Waals radii.  

 

 

Figure 4.15. Solid-state structure (30% probability) of 10 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (deg): Fe(1)−Cl(1) 2.3387(9), Fe(1)−Cl(2) 
2.2622(9), Fe(1)−N(1) 2.220(3), Fe(1)−N(2) 2.101(2), Fe(1)−N(3) 2.251(2), C(2)−N(1) 1.283(4), 
C(8)−N(3) 1.286(4); Cl(1)−Fe(1)−Cl(2) 119.35(3), N(2)−Fe(1)−Cl(2) 141.98(7), N(1)−Fe(1)−N(3) 
144.78(9). Zero-field Mössbauer spectrum of 10 (right). 
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4.10 Synthesis of Pendant Lewis Acid/Base PDIFe(CO)2 Complexes 

 

 In order to investigate the CO release of these substituted Lewis acid and Lewis 

bases Fe complexes, the corresponding series of direduced dicarbonyl complexes were 

synthesized. The reduction of the Lewis acid and Lewis bases PDIFeCl2 complexes was 

performed in 8 mL of DCM and five mole equivalents of NaHg amalgam, as illustrated in 

Scheme 4.6. This reaction was completed in a pressurized tube under one atmosphere of 

CO gas. After work up, slow evaporation of saturated diethyl ether solutions of either 

MeNHPDIFe(CO)2 (11), Me2NPDIFe(CO)2 (12), or BpinPDIFe(CO)2 (13), yielded green, diamagnetic, 

crystalline solids.  

 

 

Scheme 4.6. Synthetic scheme for PDIFe(CO)2 complexes containing pendant Lewis bases 
and Lewis acids. 
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 An ORTEP view of 11 is shown on the left in Figure 4.16. The iron center was 

determined to be five coordinate with square pyramidal geometry (τ = 0.09). The N of the 

PDI ring and one CO ligand make up the basal plane, while the other CO occupies the apical 

position. Inspection of the bond lengths reveal that the Cimine-Nimine bond lengths are 

elongated from a value of 1.274(6) and 1.280(6) Å in 8 to 1.326(3) and 1.318(3) Å in 11. 

Also, the Cimine-Cipso bond lengths are contracted from 1.488(6) and 1.485(6) Å in 8 to 

1.428(3) and 1.421(3) Å in 11. This data, taken in conjunction with the room temperature 

zero-field Mössbauer parameters (ΔEQ = 1.25(2), δ = - 0.076(9) mm/s), suggests that the 

complex is best described as a Fe(II) center with a doubly reduced MeNHPDI ligand.  

 

 

Figure 4.16. Solid-state structure (30% probability) of 11 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (o): Fe(1)−C(1) 1.783(2), Fe(1)−C(2) 1.781(3), 
Fe(1)−N(1) 1.9451(2), Fe(1)−N(2) 1.8538(2), Fe(1)−N(3) 1.9522(2), C(4)−N(1) 1.328(3), 
C(10)−N(3) 1.333(3); C(1)−Fe(1)−C(2) 95.39(10), N(2)−Fe(1)−C(1) 156.53(9), N(1)−Fe(1)−N(3) 
152.37(8). Zero-field Mössbauer spectrum of 11 (right). 
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 Complex 11 is diamagnetic in the solid state and solution, yielding clean, diagnostic 

1H and 13C{1H} NMR spectra (Figure 4.17 & 4.18). The 13C{1H} NMR resonances due to the 

CO ligands appear at 217.6 and 210.6 ppm and the FTIR spectrum of 11 displays two CO 

stretching frequencies at 1950 and 1888 cm-1, along with an NH stretching frequency at 

3389 cm-1 (Figure 4.19). The CO stretching frequency shifts are identical to those seen in 

other characterized PDIFe(CO)2 complexes that were best described as a diradical dianionic 

ligand with a low spin (S=0) Fe(II) center.35 The NH group was designed to play a role in 

hindering the release of the CO molecule by hydrogen bond interaction of the H atom (in 

NH) to the O atom (in CO). Therefore, the electrochemical release of CO from complex 11 

was expected to occur at a higher oxidation potential than MeOPDIFe(CO)2 (0.477 V). 

 

Figure 4.17. 1H NMR spectrum of 11, 500 MHz, CD2Cl2. 
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Figure 4.18. 13C{1H} NMR spectrum of 11, 126 MHz, CD2Cl2. 
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Figure 4.19. Solid FT-ATR infrared spectrum of 11. 
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 An ORTEP view of 12 is shown on the left in Figure 4.20. The iron center was 

determined to be five coordinate with square pyramidal geometry (τ = 0.07). Inspection of 

the bond lengths reveal that the Cimine-Nimine bond lengths are elongated from a value of 

1.285(3) and 1.284(3) Å in 9 to 1.328(3) and 1.333(3) Å in 12. Also, the Cimine-Cipso bond 

lengths are contracted from 1.482(3) and 1.480(4) Å in 9 to 1.431(3) and 1.421(3) Å in 12. 

This data, taken in conjunction with the room temperature zerofield Mössbauer parameters 

(ΔEQ = 1.07(2), δ = -0.06(1) mm/s), suggests that the complex is best described as a Fe(II) 

center with a doubly reduced Me2NPDI ligand (Figure 4.20, right).  

 

 

Figure 4.20. Solid-state structure (30% probability) of 12 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (o): Fe(1)−C(1) 1.767(2), Fe(1)−C(2) 1.775(2), 
Fe(1)−N(1) 1.9486(2), Fe(1)−N(2) 1.8457(2), Fe(1)−N(3) 1.9486(2), C(4)−N(1) 1.326(3), 
C(10)−N(3) 1.318(3); C(1)−Fe(1)−C(2) 94.24(11), N(2)−Fe(1)−C(2) 150.49(9), N(1)−Fe(1)−N(3) 
156.10(8). Zero-field Mössbauer spectrum of 12 (right). 
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 Complex 12 is diamagnetic in both the solid state and solution, yielding clean, 

diagnostic 1H and 13C{1H} NMR spectra (Figure 4.21 & 4.22). The 13C{1H} NMR resonances 

due to the CO ligands appear at 219.0 and 209.0 ppm and the FTIR spectrum of 12 displays 

two CO stretching frequencies at 1951 and 1892 cm-1 (Figure 4.23). These shifts are 

identical to those seen in other characterized PDIFe(CO)2 complexes.35  

 

 

Figure 4.21. 1H NMR spectrum of 12, 500 MHz, CD2Cl2. 
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Figure 4.22. 13C{1H} NMR spectrum of 12, 126 MHz, CD2Cl2. 
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Figure 4.23. Solid FT-ATR infrared spectrum of 12. 
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 Lastly, an ORTEP view of 13 is shown on the left in Figure 4.24. The iron center was 

determined to be five coordinate with square pyramidal geometry (τ = 0.19). The N of the 

BpinPDI and one CO ligand make up the basal plane, while the other CO ligand occupies the 

apical position. Inspection of the bond lengths reveal that the Cimine-Nimine bond lengths are 

elongated from a value of 1.286(4) and 1.283(4) Å in 10 to 1.331(5) and 1.327(5) Å in 13. 

Also, the Cimine-Cipso bond lengths are contracted from 1.489(4) and 1.482(4) Å in 10 to 

1.425(6) and 1.423(6) Å in 13. This data, taken in conjunction with the room temperature 

zero-field Mössbauer parameters (ΔEQ = 1.510(8), δ = -0.061(4) mm/s), suggests that 13 is 

best described as a Fe(II) center with a doubly reduced BpinPDI ligand (Figure 4.24, right).  

 

 

Figure 4.24. Solid-state structure (30% probability) of 13 (left). H atoms have been omitted 
for clarity. Selected bond lengths (Å) and angles (o): Fe(1)−C(34) 1.785(5), Fe(1)−C(35) 
1.786(5), Fe(1)−N(1) 1.966(3), Fe(1)−N(2) 1.853(3), Fe(1)−N(3) 1.952(3), C(2)−N(1) 1.331(5), 
C(8)−N(3) 1.327(5); C(34)−Fe(1)−C(35) 92.2(2), N(2)−Fe(1)−C(35) 145.58(19), 
N(1)−Fe(1)−N(3) 157.10(2). Zero-field Mössbauer spectrum of 13 (right). 
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 Complex 13 is diamagnetic in the solid state and solution, yielding clean, diagnostic 

1H and 13C{1H} NMR spectra (Figure 4.25 & 4.26). The 13C{1H} NMR resonances due to the 

CO ligands appear at 216.3 and 213.1 ppm and the FTIR spectrum of 13 displays two CO 

stretching frequencies at 1950 and 1888 cm-1 (Figure 4.27).  

 

Figure 4.25. 1H NMR spectrum of 13, 500 MHz, CD2Cl2. 
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Figure 4.26. 13C{1H} NMR spectrum of 13, 126 MHz, CD2Cl2. 
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Figure 4.27. Solid FT-ATR infrared spectrum of 13. 
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 The design of the BpinPDI ligand was thought to interact with the CO by creating a 

boron-oxygen interaction between the boron (in boronic pinacol ester) and the O atom (in 

CO). However, the ORTEP of 13, in the solid state, showed no significant interaction 

between the B of the pinacol boronic ester group and the  O atom in the apical CO ligand, in 

the solid state. The B(1)…O(1) distance is 3.415(8) Å, which is outside of the Van der Waals 

radii. The Fe-C-O bond angle in the Fe-COapical moiety is 175.0(4)°. The degree of 

pyramidalization at B(1) is ΣBα = 359.9(4)° and the 11B{1H} NMR spectrum displays a single 

resonance centered at 33.6 ppm. This resonance is slightly shifted from that observed in 10 

(38.2 ppm), but consistent with a trigonal planar boron center (Figure 4.28). 

 

 

Figure 4.28. 11B{1H} NMR spectrum of 13, 160 MHz, CD2Cl2. 
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4.11 Electrochemical Studies of Pendant Lewis Acid/Base PDIFe(CO)2 Complexes 

 

 Electrochemical studies were carried out with the three synthesized substituted 

Lewis acid and Lewis bases PDIFe(CO)2 complexes (11-13), in order to explore the CO release 

step (Scheme 4.7). As previously established in chapter 3, the direduced dicarbonyl ligand 

scaffold in 5 displays two oxidation events in the cyclic voltammogram. The first is a 

quasireversible one electron event due to the formation of the one electron oxidized 

product, [PDIFe(CO)2]+.38,39 The second is an irreversible event at a more positive potential 

due to the oxidation to the neutral PDI ligand, with subsequent irreversible release of CO.  

 

 

Scheme 4.7. Electrochemical oxidation of the direduced dicarbonyl PDIFe(CO)2 complexes 
with concomitant CO release. 
 

 All three Lewis acid and Lewis base PDIFe(CO)2 complexes display the same 

characteristic CV, yet the pendant group has an effect on the reduction potential of each 

complex (Figure 4.29). The CV of 11 reveal the quasi-reversible oxidation event at -0.395 V 

from the formation of the one electron oxidized product, [(MeNHPDI)Fe(CO)2]+. Additionally, 

the CV reveals the irreversible oxidation event at 0.535 V from the oxidation to the neutral 

MeNHPDI, with concomitant irreversible release of CO. The same quasi-reversible event due 
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to the one electron oxidation was observed for 12 and 13 at -0.511 and -0.489 V, 

respectively. Complex 12 displayed the irreversible oxidation event at 0.431 V due to 

oxidation to the neutral Me2NPDI, with concomitant irreversible release of CO. A second 

irreversible event at 0.767 V is likely due to oxidation of the tertiary amine group. Complex 

13 also displayed the irreversible oxidation at 0.647 V to the neutral BpinPDI, with 

concomitant irreversible release of CO.  

 

 

Figure 4.29. CV scans of 11 (top, red), 12 (middle, black), and 13 (bottom, blue). Two repeat 
scans are shown for each molecule and the scans were initiated at -0.95 V. Each solution 
had a concentration of 0.1 M of the PDIFe(CO)2 complex and 0.1M [(nBu)4N][PF6], in DCM, 
100 mV/s scan rate, glassy carbon electrode (scan started at -1.15 V). 
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 It appears that the irreversible CO release step (as well as the quasi-reversible one 

electron oxidation) is affected by the placement of the Lewis acid or Lewis base in the 

secondary coordination sphere. This is likely due to electronic effects that change the redox 

potential of the PDIFe(CO)2 complex. In the case of the pendant Lewis base complexes 10 

and 11, the irreversible CO release is observed at lower potentials (0.535 V and 0.431 V) 

than the pendant Lewis acid complex, 12, displaying the CO release at 0.647 V. Therefore, 

by altering the electronics of the pendant arm, the CO release can be tuned by over 200 mV. 
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Chapter 5. Conclusion 

 

 The two electrons required to reduce CO2 to CO came from the redox active PDI 

ligand, rather than a Fe(0) source. This is the second known example of the reduction of CO2 

to CO occurring on a Fe(II) complex. Furthermore, the release of the two CO molecules from 

the oxidation of the MeOPDIFe(CO)2 complex completed the CO2-to-CO cycle, demonstrating 

the first known example of this cycle on an Fe(II) center. When a chemical oxidant such as 

HCl was used, the production of H2 gas (along with the release of CO gas) was detected. 

These two gases combined are known as synthesis gas (syngas) and are the starting material 

for the Fischer-Trospch process for the production of diesel fuel.  

 

 

Scheme 5.1. CO2-to-CO cycle on MeOPDIFe(II) complex. 
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 Incorporation of various Lewis acid and bases within the secondary coordination 

sphere of the PDIFe(II) complex demonstrated electronic effects on the reduction-potential 

of the PDIFe(CO)2 complex. The reduction-potential of the PDIFe(CO)2 complexes can vary 

by up to 200 mV, by tuning the secondary coordination sphere of the PDIFe(CO)2 with Lewis 

acids or bases. Therefore, the CO release step of these complexes can occur at much lower 

potentials. 
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Chapter 6. Experimental 

 

6.1 General Considerations 

 

 All reactions were carried out using standard schlenk technique, Fisher-Porter 

pressure tubes, or in an MBraun inert atmosphere glovebox (N2) equipped with a cold well.  

Carbon dioxide (99.9%) and carbon monoxide (99.0%) gas were purchased from Praxair 

Distribution, Inc. All solvents were dried and deoxygenated with a PureSolv solvent 

purification system (CuO and alumina columns) unless otherwise noted. Diethyl ether and 

tetrahydrofuran were distilled over sodium metal. Deuterated methylene chloride-d2 (D, 

99.9%), chloroform-d1 (D, 99.9%), and toluene-d8 (D, 99.9%) were purchased from 

Cambridge Isotope Laboratories, Inc. and were degassed bythree cycles of freeze-pump-

thaw and stored in an N2-filled glove box. Sodium triethylborohydride (1.0 M solution in 

toluene), hydrochloric acid (2.0 M solution in diethyl ether), trimethylsilyl chloride (99%), 

bis(pinacolato)diboron (99%), tetramethylsilane (99%), nitromethane (95%), 2,6-

diisopropylaniline (90%), 2,6-diacetylpyridine (99%), 2-methoxy-6-methylaniline (98%), 1,2-

bis(diethylphosphino)ethane (97%), N-methyl-1,2-phenylenediamine (97%) and 2-

aminophenylboronic acid pinacol ester (98%) were purchased from Sigma-Aldrich and used 

as received except for the 2,6-diisopropylaniline (90%), which was distilled prior to use. 

Iron(II) dichloride anhydrous (98%), Iron(II) dibromide anhydrous (98%) and sodium-

mercury amalgam, 5% Na (99.9%) were purchased from Strem Chemicals Inc and used as 



www.manaraa.com

121 
 

received.  The asymmetric PDI ligand [(ArN=C(CH3))C2H3N((CH3)C=O] (Ar= 2,6-iPr-C6H3) and 

2-amino-N,N-dimethylaniline was synthesized according to a published producer.1,2 

 

Fourier transform infrared spectra were recorded on a Thermo Scientific Nicolet iS10 

FT-IR spectrometer equipped with an ATR accessory.  1H spectra were recorded on a Unity 

Inova FT-NMR spectrometer operating at 499.75 MHz.  All 1H chemical shifts were reported 

relative to SiMe4 using residual chemical shifts of the solvent as a secondary standard. 

13C{1H} spectra were recorded on a Unity Inova FT-NMR spectrometer operating at 125.66 

MHz.  All 13C chemical shifts were reported relative to SiMe4 using residual chemical shifts 

of the solvent as a secondary standard.  11B{1H} spectra were recorded in either a teflon 

insert or a quartz J-Young tube on a Unity Inova FT-NMR spectrometer operating at 160.34 

MHz.  All 11B chemical shifts were reported relative to BF3 by referencing to an external 

solution of bis(pinacolato)diboron in diethyl ether.  The parameters for collecting 11B{1H} for 

CO2 reactivity (4 – 7) were as follows: pw = 7.850 s @tpwr = 51, d1 = 1 s, nt = 512, sw = 

64102.6 Hz , and tof = 4816.1 Hz. The parameters for collecting 11B{1H} for 10 and 13 were 

as follows: pw = 13.124 s @tpwr = 51, d1 = 5 s, nt = 5000, sw = 96153.8 Hz , and tof = 

4824.1 Hz. 15N{1H} spectra were recorded on a Unity Inova FT-NMR spectrometer operating 

at 50.66 MHz.  All 15N chemical shifts were referenced to external neat nitromethane.  The 

90° pulse was calibrated to 11.25 s @tpwr = 60 prior to use.  The remaining parameters 

utilized for collecting 15N{1H} spectra were as follows: d1 = 5 s, nt = 4096, sw = 40588.5 Hz, 

and tof = 14289.8 Hz.  29Si{1H} NMR spectra were recorded on a 500 MHz Unity Inova FT-
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NMR spectrometer operating at 99.29 MHz utilizing standard borosilicate NMR tubes.  All 

29Si chemical shifts were internally referenced to SiMe4.  The 90° pulse was calibrated to 

20.25 s @tpwr = 51 and the relaxation time of 5T1 was found to correspond to a d1 of 40 s 

prior to use.  The remaining parameters utilized for collecting 29Si{1H} were as follows: nt = 

4096 sw = 8912.7 Hz, and tof = 1600.7 Hz.  

  

 GC mass spectrometry was recorded on a Varian CP3800 GC with Saturn 2000 ion 

trap (70 eV). Solution magnetic susceptibilities were calculated from Evan’s method NMR 

measurements.3 Solid-phase magnetic susceptibilities were recorded on a Johnson Matthey 

MSB-1 magnetic susceptibility balance that was calibrated with HgCo(SCN)4. Diamagnetic 

correction factors were calculated from Pascal’s constants.4 Elemental analyses were 

performed by ALS (formerly Columbia Analytical Services) in Tuscon, AZ.   

 

 Mössbauer spectra were recorded at room temperature with a constant-

acceleration spectrometer (Wissel GMBH, Germany) in a horizontal transmission mode 

using a 50 mCi 57Co source. Approximately 0.080 g of sample was crushed in a Mössbauer 

sample holder and a drop of paratone was used to cover the sample to prevent oxidation. 

Data acquisition varied from 2 days to 7 days to get a statistically reasonable spectrum for 

each sample to analyze. The velocity scale was normalized with respect to metallic iron at 

room temperature; hence all isomer shifts were recorded relative to metallic iron. The 

Mössbauer spectra were fitted by assuming Lorentzian line shapes using the NORMOS 
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(Wissel GMBH) least-square fitting program. The isomer shifts and quadrupole splitting 

parameters were determined from the fitted spectra. 

 

 Cyclic voltammetry was carried out using a Parstat 2273 potentiostat employing a 

standard three-electrode electrochemical cell consisting of a glassy carbon working 

electrode and a platinum auxiliary electrode. All potentials are reported relative to a Ag/Ag+ 

reference electrode which was calibrated to the ferrocene redox couple. Experiments were 

carried out under an argon atmosphere at room temperature using methylene chloride 

solutions of the analyte at 0.010 M and with 0.100 M tetra(n-butyl)ammonium 

hexafluorophosphate as the supporting electrolyte.  

 

 X-ray diffraction experiments for 5 and 7 were carried out on a Bruker Smart Apex 

diffractometer at 173(2) K using MoKα radiation (λ=0.71070 Å).  Absorption corrections 

were applied by SADABS.5 The structures were solved using direct methods and refined with 

full-matrix least-squares methods based on F2. All non-hydrogen atoms were refined with 

anisotropic thermal parameters.  H atoms in 5 were found on the difference F-map and 

refined with isotropic thermal parameters. H atoms in 5 were refined in calculated positions 

in a rigid group model. Highly disordered solvent molecules, CH3OH, in 5 were treated by 

SQUEEZE.6 Correction of the X-ray data by SQUEEZE is 13 electrons/cell; the required value 

is 18 electrons/cell. All calculations were performed using the SHELXTL (v. 6.10) package.7 X-

ray diffraction experiment for 3 was collected at -133oC on a Bruker APEX II single crystal X-
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ray diffractometer, Mo-radiation. A brown plate, measuring 0.35 x 0.17 x 0.07 mm3 was 

mounted on a loop with oil. Crystal-to-detector distance was 40 mm and exposure time was 

10 seconds per frame for all sets.  The scan width was 0.5o. Data collection was 99% 

complete to 25o  in .  A total of 53475 reflections were collected covering the indices, h = -

71 to 71, k = -10 to 10,  l = -31 to 31.  11794 reflections were symmetry independent and 

the Rint = 0.0973 indicated that the data was of slightly less than average quality (0.07).  

Indexing and unit cell refinement indicated a C – centered monoclinic lattice.  The space 

group was found to be C 2/c  (No.15). The data was integrated and scaled using SAINT, 

SADABS within the APEX2 software package by Bruker.8 Solution by direct methods 

(SHELXS, SIR979) produced a complete heavy atom phasing model consistent with the 

proposed structure of 3. The structure of 3 was completed by difference Fourier synthesis 

with SHELXL97.10,11 Scattering factors are from Waasmair and Kirfel.12 Hydrogen atoms were 

placed in geometrically idealized positions and constrained to ride on their parent atoms 

with C---H distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters Ueq 

were fixed such that they were 1.2Ueq of their parent atom Ueq for CH's and 1.5Ueq of their 

parent atom Ueq in case of methyl groups. All non-hydrogen atoms were refined 

anisotropically by full-matrix least-squares. Extensive disorder of pentane and ethyl alcohol 

impose disorder in one of the two independent molecules of the asymmetric unit. A high R1 

value and unusually large second weighting parameter indicate that some amount of 

twinning is present which could not be resolved. X-ray diffraction intensities were collected 

at 173(2) K (8, 9 and 13) and 193 K (12) on a Bruker Apex CCD diffractometer and at 100 K 
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(11 and 10) on a Bruker Apex2 diffractometer using MoKσ radiation λ= 0.71073 Å. Space 

group was determined based on systematic absences and intensity statistics (12). 

Absorption corrections were applied by SADABS. Structures were solved by direct methods 

and Fourier techniques and refined on F2 using full matrix leastsquares procedures. All non-

H atoms were refined with anisotropic thermal parameters. H atoms in 12 and 13 were 

found from the residual density maps and refined with isotropic thermal parameters except 

those in terminal Me groups in 13 which were treated in calculated positions. The H atom at 

the N atom in 8 involved in H-bonds was found from the residual density map and refined, 

other H atoms in these structures and all H atoms in 9 and 10 were treated in calculated 

positions in a rigid group model. All calculations were performed by the Bruker SHELXTL (v. 

6.10) package. 

  

 Gas Chromatography was performed on a SRI 8610c GC using a 6 foot 13x molecular 

sieve column and a TCD detector.  Calibration curves and analyses were performed through 

on-column injection by use of gastight syringes from Hamilton. Varying volumes of pure 

carbon monoxide and hydrogen were injected to construct calibration curves. For 

headspace samples, a volume of nitrogen equivalent to the sample volume was first 

injected into headspace. The syringe was then purged thoroughly, after which the sample 

was drawn up and then injected into the GC. 
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Preparation of [(2,6-iPrC6H3N=CMe)(O=CMe)C5H3N] (1) 

 

In a 250 mL round bottom flask, 2,6-diacetylpyridine (4.51g, 27.6mmol) and a stir bar was 

added. Using a graduated pipette, 2,6-diisoproylaniline (5.22mL, 27.6mmol) was then added 

to the 250mL round bottom flask. The round bottom flask was capped with a rubber 

septum. Dry methanol (~40mL) was then added to the solution via syringe while the 

solution was stirring. The solution stirred until all reactants were dissolved. The round 

bottom was placed under an ice bath while still stirring. About 10 drops of 99% formic acid 

(.25mL) was carefully added to the solution via a syringe. The round bottom was allowed to 

stir in the ice bath for 1 hour. The round bottom was then placed in a refrigerator at 0°C for 

48 hours. After 1 hour, the round bottom was moved to the freezer (-30 C) for 24 hours. 

The resulting yellow solid was vacuum filtered through a Buchner funnel, with a No. 2 filter 

paper, while also being washed with dry methanol. The dry yellow solid was dried through 

the schlenk line and identified as 1 (85.5%). 

FTIR (ATR): ν(C=N) 1647 and 1698 (C=O) cm-1. 

1H NMR (CDCl3): δ = 8.55 (d, J = 7.8 Hz, 1 H, m-pyr), 8.12 (d, J = 7.8 Hz, 1 H, m-pyr), 7.94 (t, J 
= 7.8 Hz, 1 H, p-pyr), 7.15 (d, J = 7.3 Hz, 2 H, m-iPrAr), 7.09 (t, J = 7.3 Hz, 1 H, m-iPrAr), 2.77 (s, 
3 H, (CH3)C=O), 2.69 (septet, J = 6.8 Hz, 2 H, CH(CH3)2), 2.49 (s, 3 H, (CH3)C=N), 1.14 (d, J = 
1.5 Hz, 6 H, (CH3)2CH)), 1.12 (d, J = 1.5 Hz, 6 H, (CH3)2CH)).  
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Preparation of [(2,6-iPr-C6H3)N=CMe)(2-MeO-6-Me-C6H3)N=CMe)C5H3N] (2) 

 

In an oven-dried 500 mL round bottom flask, equipped with a Dean-Stark apparatus  

[(ArN=C(CH3))C2H3N((CH3)C=O] (Ar= 2,6-iPr-C6H3) (2.00 g, 6.20 mmol) was added with a 

slight excess of 2-methoxy-6-methylaniline (0.852 g, 6.21 mmol) and catalytic amount of p-

toluenesulfonic acid monohydrate (0.0352 g, 0.185 mmol). The mixture was dissolved with 

dry toluene (200 mL). The solution was stirred and refluxed at 120 °C for 12 h followed by 

concentration under vacuum. Acetonitrile (100 mL) was added to precipitate out a yellow 

solid. The mixture was filtered through a Büchner funnel and washed with dry acetonitrile 

yielding a pale yellow solid identified as MeOPDI (2) (63%).  

FTIR (ATR): ν(C=N) 1643 cm-1. 

1H NMR (CD2Cl2): δ = 8.47 (d, J = 7.8 Hz, 1 H, m-pyr), 8.45 (d, J = 7.8 Hz, 1 H, m-pyr), 7.93 (t, J 
= 7.8 Hz, 1 H, p-pyr), 7.17 (d, J = 7.3 Hz, 2 H, m-iPrAr), 7.09 (t, J = 7.3 Hz, 1 H, p-iPrAr), 7.01 (t, J 
= 7.8 Hz, 1 H, p-MeOAr), 6.87 (d, J = 7.3 Hz, 1 H, m-MeOAr), 6.83 (d, J = 8.3 Hz, 1 H, m-MeOAr), 
3.76 (s, 3 H, O-CH3), 2.77 (septet, J = 6.8 Hz, 2 H, CH(CH3)2), 2.27 (s, 3 H, (CH3)C=N), 2.25 (s, 3 
H, (CH3)C=N), 2.09 (s, 3 H, CH3(o-MeOAr)), 1.16 (d, J = 1.5 Hz, 6 H, (CH3)2CH)), 1.15 (d, J = 1.5 
Hz, 6 H, (CH3)2CH)).  
 
13C{1H} NMR (CD2Cl2): δ = 168.9 (C=N(MeOAr)), 167.6 (C=N(iPrAr)), 155.9, 155.7, 148.4, 147.1, 
139.3, 137.4, 136.3, 128.7, 124.1, 124.0, 123.5, 122.9, 122.8, 122.6, 109.4, 56.1, 28.8, 23.5, 
23.1, 18.0, 17.5, 15.9, 1.34. 
 
GCMS (M+): Calculated for C29H35N3O: 441.3  Found: 441.4.  
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Figure 6.1. 13C{1H} NMR spectrum of 2, 126 MHz, CD2Cl2. 
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Preparation of MeOPDIFeBr2 (3) 

 

In an oven-dried 50 mL Erylenmeyer flask, MeOPDI (0.200 g, 0.452 mmol) was dissolved in 

methylene chloride (10 mL) producing a faint yellow solution. While stirring, a suspension of 

FeBr2 (0.0977 g, 0.452 mmol) in THF (3 mL) was added, instantly producing a blue colored 

solution. The solution was allowed to stir overnight. The solution was filtered through a 

pipette packed with glass wool and celite and layered with pentane (40 mL) forming blue 

crystals identified as MeOPDIFeBr2 (3) (71%).  

1H NMR (CDCl3): δ = 82.4 (s, 1 H, p-pyr), 74.2 (s, 1 H, o-pyr), 73.2 (s, 1 H, o-pyr), 18.6 (s, 1 H, 
o-MeOAr), 17.6 (s, 1 H, o-MeOAr), 13.5 (s, 1 H, o-iPrAr), 12.9 (s, 1 H, o-iPrAr), 9.49 (s, 3 H, O-CH3), 
-4.37 (s, 1 H, p-MeOAr), -5.16 (s, 12 H, (CH3)2CH), -9.81 (s, 3 H, CH3(m-MeOAr)), -12.1 (s, 1 H, p-
iPrAr), -14.8 (s, 2 H, CH(CH3)2), -25.8 (s, 3 H, (CH3)C=N-MeOAr), -35.2 (s, 3 H, (CH3)C=N-iPrAr).   
 
Evan’s Method: µeff = 4.89 µB (solution), 5.49 µB (solid).  

Elemental: C29H35Br2FeN3O: C, 52.99; H, 5.37; N, 6.39.  Found: C, 53.46; H, 5.36; N, 6.18.   
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Generation of MeOPDIFeN2 (4) 

 

In an oven-dried 20 mL scintillation vial fitted with a #33 Suba Seal septum and a stirbar, 3 

(0.100 g, 0.152 mmol) was added with anhydrous diethyl ether (5 mL). This suspension was 

stored at -30 °C in the glovebox freezer for 1 h prior to reduction. The suspension was 

removed from the freezer and NaBHEt3 (-30 °C, 0.304 mL, 0.304 mmol) was syringed into 

the solution drop-wise resulting in an immediate color change to a deep green colored 

solution that was allowed to warm to room temperature with stirring.  This solution was 

identified as MeOPDIFeCl2 (4).  

FTIR (Pentane): ν(N2) 2045 cm-1, ν((N2)2) 2130 and 2071 cm-1. 
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Generation of MeOPDIFe15N2 (4(15N2)) 

 

The green solution produced above (from 3 and two equivalents of NaBHEt3) was allowed 

to stir for 30 min before filtration through a pipette packed with glass wool and celite. In a J-

Young NMR tube fitted with a pressure lid, the green solution (0.500 mL) was added and 

frozen in a cold well.  Once frozen, the headspace was evacuated and refilled with 15N2 gas.  

The tube was allowed to come to room temperature, shaken for 10 min, and immediately 

placed into the spectrometer.   

15N{1H} NMR (Et2O): δ = 113.5 and 104.7. IR (pentane): ν(N2) 1959 cm-1. 
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Generation of MeOPDIFe(CO)2 (5) 

 

Inside the glove box, an 88 mL pressure tube fitted with a pressure gauge, an inlet needle 

valve, and an outlet needle valve, was charged with a freshly prepared solution of 4 (0.152 

mmol in 10 mL diethyl ether). The pressure tube was sealed and brought outside the glove 

box to be pressurized with CO gas (1 atm). The solution was allowed to stir overnight. The 

solvent was removed in vacuo and brought back into the glove box for filtration through a 

pipette packed with glass wool and celite. Slow evaporation of the diethyl ether yielded 

green crystals identified as MeOPDIFe(CO)2, 5 (60%). 

 1H NMR (CD2Cl2): δ = 8.46 (d, J = 7.7 Hz, 1 H, o-pyr), 8.45 (d, J = 7.7 Hz, 1 H, o-pyr), 7.94 (t, J 
= 7.7 Hz, 1 H,  p-pyr), 7.17 (d, J = 7.7 Hz, 2 H, o-iPrAr), 7.08 (t, J = 7.7 Hz, 1 H, p-iPrAr), 7.00 (t, J 
= 7.7 Hz, 1 H, p-MeOAr), 6.87 (d, J = 7.4 Hz, 1 H, o-MeOAr), 6.83 (d, J = 8.0 Hz, 1 H, o-MeOAr), 
3.76 (s, 3 H, O-CH3), 2.77 (septet, J = 6.7 Hz, 2 H, CH(CH3)2), 2.26 (s, 3 H, (CH3)C=N), 2.24 (s, 3 
H, (CH3)C=N), 2.09 (s, 3 H, CH3(m-MeOAr)), 1.16 (d, J = 7.1 Hz, 6 H, (CH3)2CH), 1.14 (d, J = 7.1 
Hz, 6 H, (CH3)2CH).  
 
13C{1H} NMR (CD2Cl2): δ = 216.7 (FeCO), 155.7, 155.2, 150.7, 149.9, 145.1, 144.9, 142.4, 
140.8, 139.78, 131.51, 126.14, 125.83, 123.51, 123.51, 123.48, 122.34, 120.84, 120.80, 
116.74, 108.48, 66.02, 55.32, 27.43, 27.37, 25.01, 24.63, 23.76, 17.79, 16.60, 15.44, 15.24.  
 
FTIR (ATR): ν(CO) 1947 and 1883 cm-1. Anal calcd for C30H35FeN3O3: C, 60.01; H, 6.55; N, 
7.00.  Found: C, 60.52; H, 6.20; N, 6.95. 
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Reactivity of 4 with CO2 gas to form 5 and Purple Solid 

 

Inside the glove box, an 88 mL pressure tube fitted with a pressure gauge, an inlet needle 

valve, and an outlet needle valve, was charged with 4 (0.152 mmol) and anhydrous diethyl 

ether (10 mL). The pressure tube was sealed, and pressurized inside the glove box with CO2 

gas (1 atm). The solution was allowed to stir overnight, during which time the solution 

changed color from dark green to brown and then finally back to green. Purple precipitate 

was present at the bottom of tube. The tube was degassed in vacuo and the contents re-

dissolved in diethyl ether. The solution was filtered through a pipette packed with glass 

wool and celite into a scintillation vial, stoppered with a rubber septum. The vial was 

removed from the glove box in order to dry the sample at 80 °C, which resulted in a green 

solid identified as 5(43 %). The purple solid on the celite was dissolved in DCM and filtered 

through a pipette packed with glass wool and celite. The purple solution degraded to yellow 

slush within an hour at room temperature. 
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Reactivity of 4 with 13CO2 gas to form (5(13CO)2) 

 

In an oven-dried 20 mL scintillation vial, 3 (0.040 g, 0.061 mmol) was dissolved in toluene-d8 

(2 mL). This suspension was stored at -30 °C in the glovebox freezer for 1 h prior to 

reduction. The suspension was removed from the freezer and sodium triethylborohydride (-

30 °C, 0.122 mL, 0.122 mmol) was syringed into the solution drop-wise resulting in an 

immediate color change to a deep green solution of 4. The green solution of 4 was allowed 

to stir for 30 min before filtered through a pipette packed with glass wool and celite into a J-

Young NMR tube.  The tube was placed in a liquid nitrogen cold well, the solution was 

frozen, and the headspace was removed.  The tube was removed from the cold well and the 

headspace was backfilled with 13CO2, allowed to warm to room temperature, and shaken 

for 10 min before being placed immediately in the NMR spectrometer.  

FTIR (pentane): ν(13CO) 1923 and 1867 cm-1. 

13C{1H} NMR (toluene-d8): δ = 214.8 Fe13CO.  
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Preparation of MeOPDIFeDEPE (6) 

 

The green solution of 4 was prepared from 3 (63.7 mg, 0.097 mmol), NaBHEt3 (0.193 mL, 

0.194 mmol) and 10 mL of diethyl ether. After 30 min of stirring, DEPE (0.022 mL, 0.0943 

mmol) was slowly added, to see a slow color change from dark green to red-brown. The 

solution was allowed to stir over night before vacuuming off the solvent. The mixture was 

re-dissolved in pentane and filtered through a pipette packed with glass wool and celite. 

After one day of sitting in the pentane solution at - 35 0C, black crystals were furnished and 

identified as MeOPDIFeDEPE (6). 
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Reactivity of 6 with CO2 gas to form (5) 

 

Inside the glove box, an 88 mL Fisher-Porter tube fitted with a pressure gauge, an inlet 

needle valve, and an outlet needle valve, was charged with 6 (20.0 mg, 0.028 mmol), and 

anhydrous diethyl ether (10 mL). The Fisher-Porter tube was sealed, and pressurized inside 

the glove box with CO2 gas (1 atm). The solution was allowed to stir for two hours, during 

which time the solution changed color from black to brown and then finally to green. The 

tube was degassed in vacuo and filtered through a pipette packed with glass wool and celite 

into a scintillation vial, stoppered with a rubber septum. The green solid was identified as 5. 

Analysis of the solution for the oxidized DEPE products was inconclusive. 
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Reactivity of 4 with CO2 gas and TMSCl to form (5) and MeOPDIFeCl2 (7) 

  

Inside the glove box, an 88 mL Fisher-Porter tube fitted with a pressure gauge, an inlet 

needle valve, and an outlet needle valve, was charged with 4 (0.152 mmol), trimethylsilyl 

chloride (0.039 mL, 0.304 mmol) and anhydrous diethyl ether (10 mL). The Fisher-Porter 

tube was sealed, and pressurized inside the glove box with CO2 gas (1 atm). The solution 

was allowed to stir overnight, during which time the solution changed color from dark green 

to brown and then finally back to green. Blue precipitate was present at the bottom of tube 

and on the stir bar at the end of the reaction. The tube was degassed in vacuo and filtered 

through a pipette packed with glass wool and celite into a scintillation vial, stoppered with a 

rubber septum. The vial was removed from the glove box in order to dry the sample at 80 

°C, which resulted in a green solid identified as 5 (35.5%). The blue solid on the celite was 

dissolved in methanol and layered with diethyl ether to furnish blue crystals identified as 

MeOPDIFeCl2 (7) (66.9%).  

1H NMR (CDCl3): δ = 79.9 (s, p-pyr), 79.1 (s, 1 H, o-pyr), 77.4 (s, 1 H, o-pyr), 17.9 (s, 1 H, o-
MeOAr), 17.0 (s, 1 H, o-MeOAr), 13.5 (s, 1 H, o-iPrAr), 12.5 (s, 1 H, o-iPrAr), 7.78 (s, 3 H, O-CH3), -
4.98 (s, 1 H, p-MeOAr), -6.55 (s, 12 H, (CH3)2CH), -9.88 (s, 3 H, CH3(m-MeOAr)), -13.1 (s, 1 H, p-
iPrAr), -14.1 (s, 2H, CH(CH3)2), -30.5 (s, 3 H, (CH3)C=N-MeOAr), -43.6 (s, 3 H, (CH3)C=N-iPrAr).  
 
Evan’s Method: µeff = 4.94 µB (solution), 5.58 µB (solid).  
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Elemental: C30H39Cl2FeN3O2
.C2H5O (0.5 etherate): C, 66.22; H, 6.74; N, 7.02.  Found: C, 

66.20; H, 6.41; N, 7.18.  
 
 
 
 
 
 
 

 

Figure 6.2. 1H NMR spectrum of 7 from the HCl/Et2O reaction with 5, 500 MHz, CDCl3. 
Although there are resonances from a small amount of likely [MeOPDIFe(CO)2]+

, the majority 
of relevant resonances from 7 are present.  
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Reactivity of 3 with an HCl/Et2O solution 

 

5 (0.035 mg, 0.063 mmol) was placed in an oven-dried 20 mL scintillation vial fitted with a 

#33 Suba Seal septum and a stirbar. The solid was dissolved in anhydrous diethyl ether (10 

mL), and stored in the glovebox freezer at -30 °C for 30 min. The solution was removed and 

while stirring, HCl/Et2O (0.063 mL of 2M HCl/Et2O, 0.126 mmol) was syringed into the 

solution. The reaction was allowed to warm to room temp and stir for 3 h, during which 

time formation of precipitates was observed. After GC analysis of the headspace, the diethyl 

ether was removed under vacuum, resulting in a mixture of blue and green solids. The 

green solid was redissolved in diethyl ether, filtered through a pipette packed with glass 

wool and celite, and concentrated in vacuo to yield a blue solid identified as 5 (29%). The 

remaining solid left on the celite filter and on the scintillation vial was recovered with 

methylene chloride and concentrated in vacuo to yield a blue solid identified as 7 (47%). 
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Quantitation of hexamethyldisiloxane by 29Si{1H} NMR. 

In a glove box, an 88 mL Fisher-Porter tube fitted with a pressure gauge, an inlet needle 

valve, and an outlet needle valve, was charged with a freshly prepared solution of 2 (0.152 

mmol), trimethylsilyl choride (0.039 mL, 0.304 mmol), tetramethylsilane (0.040 mL, 0.304 

mmol) and anhydrous diethyl ether (10 mL). The Fisher-Porter tube was sealed and 

pressurized inside the glove box with CO2 gas (1 atm). The solution was allowed to stir 

overnight, during which time the solution changed color from dark green to brown and then 

finally back to green. The solution (0.500 mL) was transferred into an NMR tube and an 

inverse gated 1H decoupled 29Si NMR spectrum was obtained. The integrated value of 

hexamethyldisiloxane (0.78) was used relative to the internal reference, tetramethylsilane 

(1.00) to calculate the amount of moles of hexamethyldisiloxane produced.13  

 

Figure 6.3. 29Si{1H} NMR spectrum (99 MHz, Et2O) of the reaction mixture of 0.152 mmol 4 
and an excess of TMSCl in diethyl ether post exposure (12 hours) to 1 atm CO2. The 
resonance at 30 ppm is attributed to unreacted trimethylsilyl chloride.  TMS (0.304 mmol) 
was present as an internal standard. 
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Observation of triethylborane pre/post reaction with CO2. 

In an oven-dried 20 mL scintillation vial fitted with a #33 Suba Seal septum and a stirbar, 1 

(0.100 g, 0.152 mmol) was added with anhydrous diethyl ether (5 mL). This suspension was 

stored at -30 °C in the glovebox freezer for 1 h prior to reduction. The suspension was 

removed from the freezer and sodium triethylborohydride (-30 °C, 0.304 mL, 0.304 mmol) 

was syringed into the solution drop-wise resulting in an immediate color change to a deep 

green colored solution identified as 2 that was allowed to warm to room temperature with 

stirring.  The solution (0.500 mL) was transferred into a quartz J-Young NMR tube and a 

11B{1H} NMR spectrum was obtained, showing a resonance at 86.7 ppm, corresponding to 

triethylborane with no other boron containing species. The J-Young NMR tube was then 

degassed by repeated cycles of freeze-pump-thaw and then backfilled with CO2 gas. 

Another 11B NMR spectrum was obtained over the course of 5 h, showing a major 

resonance at 86.7 ppm. 
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Figure 6.4. 11B{1H} NMR spectrum of  the post-CO2 reaction, 160 MHz, Et2O. The majority of 
the boron exist as BEt3 (86.69 ppm). 
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Figure 6.5. Picture of CO2 reduction of 4 at t = 0 h and t = 24 h. 
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Preparation of MeNHPDIFeCl2 (8) 

 

In an oven-dried 100 mL Schlenk flask, [(ArN=C(CH3))C2H3N((CH3)C=O] (Ar= 2,6-iPr-C6H3) 

(0.500 g, 1.55 mmol) and FeCl2 (0.197 g, 1.55 mmol) was dissolved in ethanol (20 mL) 

producing a purple solution. While stirring, the solution was heated at 60 °C for 30 min 

under N2 gas. A solution of N-methyl-1,2-phenylenediamine (0.187 g, 1.55 mmol) in 10 mL 

of methanol was syringed into the Schlenk flask and heated at 80 °C for 12 h under N2 gas. 

The solvent was removed in vacuo and brought back into the glove box to be re-dissolved in 

methylene chloride and filtered through a pipette packed with glass wool and celite. 

Recrystallization from methylene chloride and diethyl ether layer afforded black crystals 

identified as MeNHPDIFeCl2 (8)    (69%).  

FTIR (ATR): ν(N-H) 3318 cm-1. 

1H NMR (CDCl3): δ = 82.0 (s, 1 H, p-pyr), 78.2 (s, 1 H, o-pyr), 74.9 (s, 1 H, o-pyr), 54.5 (s, 1 H, 
MeNHAr), 25.0 (s, 1 H, HNCH3), 22.1 (s, 1 H, MeNHAr), 19.3 (s, 1 H, MeNHAr), 14.9 (s, 1 H, o-iPrAr), 
10.3 (s, 1 H, o-iPrAr), -1.54 (s, 3 H, CH3NH), -4.26 (s, 12 H, (CH3)2CH), -6.66 (s, 1 H, MeNHAr),  -
8.96 (s, 1 H, p-iPrAr), -10.6 (s, 1H, CH(CH3)2), -12.7 (s, 3 H, (CH3)C=N-MeNHAr), -45.5 (s, 3 H, 
(CH3)C=N-iPrAr). 
 
Evan’s Method: µeff = 4.93 µB (solution), 5.11 µB (solid). 

Elemental: C28H34Cl2FeN4•CH2Cl2 (636.10): calcd. C, 54.57; H, 5.68; N, 8.78; found C, 55.33; 
H, 5.86; N, 8.76. 
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Figure 6.6. 1H NMR spectrum of 8, 500 MHz, CDCl3. 
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Preparation of Me2NPDIFeCl2 (9) 

 

In an oven-dried 100 mL Schlenk flask, [(ArN=C(CH3))C2H3N((CH3)C=O] (Ar= 2,6-iPr-C6H3) 

(0.500 g, 1.55 mmol) and FeCl2 (0.197 g, 1.55 mmol) was dissolved in ethanol (20 mL) 

producing a purple solution. While stirring, the solution was heated at 60 °C for 30 min 

under N2 gas. A solution N,N-dimethyl-1,2-phenylenediamine (0.211 g, 1.55 mmol) in 10 mL 

of methanol was syringed into the Schlenk flask and heated at 80 °C for 12 h under N2 gas. 

The solvent was removed in vacuo and brought back into the glove box to be re-dissolved in 

methylene chloride and filtered through a pipette packed with glass wool and celite. 

Recrystallization from methylene chloride and diethyl ether layer afforded black crystals 

identified as Me2NPDIFeCl2 (9)    (58%).  

1H NMR (CDCl3): δ = 79.9 (s, 1 H, p-pyr), 77.4 (s, 1 H, o-pyr), 75.9 (s, 1 H, o-pyr), 17.3 (s, 4 H, 
o,m,p-(Me)2NAr), 16.1 (s, 6 H, (CH3)2N), 6.9 (s, 1 H, o-iPrAr), 5.8 (s, 1 H, o-iPrAr), -4.9 (s, 12 H, 
(CH3)2CH), -8.4 (s, 1 H, p-iPrAr), -11.0 (s, 2 H, CH(CH3)2), -32.7 (s, 3 H, (CH3)C=N-(Me)2NAr), -40.4 
(s, 3 H, (CH3)C=N-iPrAr)  
 

Evan’s Method: µeff = 4.99 µB (solution), 5.01 µB (solid). 

Elemental: C29H36Cl2FeN4 (567.37): calcd. C, 61.39; H, 6.40; N, 9.87; found C, 60.48; H, 6.88; 
N, 9.47. 
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Figure 6.7. 1H NMR spectrum of 9, 500 MHz, CDCl3. 
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Preparation of BpinPDIFeCl2 (10) 

 

In an oven-dried 100 mL Schlenk flask, [(ArN=C(CH3))C2H3N((CH3)C=O] (Ar= 2,6-iPr-C6H3) 

(0.500 g, 1.55 mmol) and FeCl2 (0.197 g, 1.55 mmol) was dissolved in ethanol (20 mL) 

producing a purple solution. While stirring, the solution was heated at 60 °C for 30 min 

under N2 gas. A solution of 2-aminophenylboronic acid pinacol ester in ethanol (10 mL) was 

syringed into the Schlenk flask and heated at 80 °C for 12 h under N2 gas. The solvent was 

removed in vacuo and brought back into the glove box to be re-dissolved in acetonitrile and 

filtered through a pipette packed with glass wool and celite. A slow vapor diffusion of 

diethyl ether into an acetonitrile solution of BpinPDIFeCl2 afforded blue crystals identified as 

BpinPDIFeCl2 (10) (78%).  

1H NMR (CDCl3): δ = 83.4 (s, 1 H, p-pyr), 80.0 (s, 1 H, o-pyr), 44.3 (s, 1 H, o-pyr), 24.9 (s, 1 H, 
BpinAr), 22.7 (s, 1 H, BpinAr), 15.8 (s, 1 H, BpinAr), 13.5 (s, 1 H, BpinAr), 10.0 (s, 1 H, o-iPrAr), 9.86 
(s, 1 H, o-iPrAr), -3.10 (s, 1 H, p-iPrAr), -7.90 (s, 12 H, Bpin(CH3)2), -16.9 (s, 12 H, (CH3)2CH), -
17.6 (s, 2H, CH(CH3)2), -25.5 (s, 3 H, (CH3)C=N-BpinAr), -29.9 (CH3)C=N-iPrAr). 
 
11B{1H} NMR (CDCl3): δ = 38.2 (s, Bpin).  

Evan’s Method: µeff = 4.65 µB (solution), 4.73 µB (solid). 

Elemental: C33H42BCl2FeN3O2 (650.27): calcd. C, 60.95; H, 6.51; N, 6.46; found C, 59.47; H, 
6.35; N, 6.47.  
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Figure 6.8. 1H NMR spectrum of 10, 500 MHz, CDCl3. 
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Preparation of MeNHPDIFe(CO)2 (11) 

 

An 88 mL Fisher-Porter tube was charged with 8 (0.100 g, 0.181 mmol), sodium mercury 

amalgam (0.416 g), methylene chloride (10 mL) and CO gas (1 atm). The mixture was 

allowed to stir for 2 d, producing a green solution. The solvent was removed in vacuo and 

brought back into the glove box to be re-dissolved in diethyl ether and filtered through a 

pipette packed with glass wool and celite. Slow evaporation of the diethyl ether afforded 

green crystals identified as MeNHPDIFe(CO)2 (11) (76%).  

FTIR (ATR): ν(N-H) 3389 cm-1, v(CO) 1945 and 1883 cm-1. 

1H NMR (CD2Cl2): δ = 8.15 (dd, J = 7.3, 1.8 Hz, 2 H, o-pyr), 7.57 (t, J = 7.3 Hz, 1 H, p-pyr), 7.20 
(m, 4 H, o,m,p-MeNHAr ), 6.93 (dd, J = 7.9, 1.2 Hz, 1 H, o-iPrAr), 6.75 (t, J = 6.7 Hz, 1 H, p-iPrAr), 
6.71 (d, J = 7.9 Hz, 1 H, o-iPrAr), 3.27 (q, J = 4.9 Hz, 1 H, NH), 2.74 (septet, J = 6.7 Hz, 1 H, 
CH(CH3)2), 2.65 (d, J = 4.8 Hz, 3 H, NCH3), 2.38 (s, 3 H, (CH3)C=N), 2.35 (s, 3 H, (CH3)C=N), 
2.18 (septet, J = 6.7 Hz, 1 H, CH(CH3)2), 1.27 (d, J = 6.7 Hz, 3 H, (CH3)2CH), 1.09 (d, J = 6.7 Hz, 
3 H, (CH3)2CH), 1.06 (d, J = 6.7 Hz, 3 H, (CH3)2CH), 0.92 (d, J = 6.7 Hz, 3 H, (CH3)2CH). 
 
13C{1H} NMR (CD2Cl2): δ = 217.5, 210.6 (2 s, Fe(CO)2), 157.1, 150.1, 145.8, 142.2, 141.0, 
140.0, 127.3, 126.7, 124.0, 123.5, 122.5, 121.8, 121.5, 118.2, 116.6, 111.0, 66.2, 30.8, 28.8, 
27.8, 25.2, 24.9, 23.5, 23.1, 22.7, 16.8, 15.6, 15.5 ppm. 
 
Elemetnal: C30H34FeN4O2 (538.46): calcd. C, 66.92; H, 6.36; N, 10.40; found C, 66.34; H, 6.98; 
N, 10.18. 
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Preparation of Me2NPDIFe(CO)2 (12) 

 

An 88 mL Fisher-Porter tube was charged with 9 (0.100 g, 0.176 mmol), sodium mercury 

amalgam (0.405 g), methylene chloride (10 mL) and CO gas (1 atm). The mixture was 

allowed to stir for 2 d, producing a green solution. The solvent was removed in vacuo and 

brought back into the glove box to be re-dissolved in diethyl ether and filtered through a 

pipette packed with glass wool and celite. Slow evaporation of the diethyl ether afforded 

green crystals identified as Me2NPDIFe(CO)2 (12) (65%). 

FTIR (ATR): v(CO) 1951 and 1892 cm-1.  

1H NMR (CD2Cl2): δ = 8.09 (dd, J = 7.8, 2.44 Hz, 2 H, o-pyr), 8.45 (t, J = 7.8 Hz, 1 H, p-pyr), 
7.22 (m, 4 H, o,m,p-(Me)2NAr), 7.08 (dd, J = 5.9, 2.9 Hz, 1 H, o-iPrAr), 7.10 (dt, J = 7.8, 1.5 Hz, 1 
H, p-iPrAr), 6.97 (dd, J = 7.8, 1.5 Hz, 1 H, p-MeOAr), 2.88 (septet, J = 6.8 Hz, 1 H, CH(CH3)2), 2.40 
(s, 3 H, (CH3)C=N), 2.36 (s, 6 H, N(CH3)2), 2.33 (s, 3 H, (CH3)C=N), 1.97 (septet, J = 6.8 Hz, 1 H, 
CH(CH3)2), 1.35 (d, J = 6.4 Hz, 3 H, (CH3)2CH), 1.15 (d, J = 6.8 Hz, 3 H, (CH3)2CH), 0.90 (d, J = 
6.8 Hz, 3 H, (CH3)2CH), 0.85 (d, J = 6.8 Hz, 3 H, (CH3)2CH). 
 
13C{1H} NMR (CD2Cl2): δ = 219.1, 209.1 (2 s, Fe(CO)2), 156.2, 155.4, 149.8, 147.0, 145.8, 
145.5, 145.2, 141.1, 139.2, 126.3, 126.0, 125.0, 123.4, 123.3, 121.2, 121.1, 118.3, 117.8, 
65.7, 41.9, 27.4, 27.3, 25.3, 24.8, 23.9, 22.9, 15.9, 15.4, 15.2.  
 
Elemental: C31H36FeN4O2•0.5C4H10O (589.26): calcd. C 67.23, H 7.01, N 19.50; found C, 
67.15; H, 7.44; N, 9.34. 
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Preparation of BpinPDIFe(CO)2 (13) 

 

An 88 mL Fisher-Porter tube was charged with 10 (0.100 g, 0.154 mmol), sodium mercury 

amalgam (0.354 g), methylene chloride (10 mL) and CO gas (1 atm). The mixture was 

allowed to stir for 2 d, producing a green solution. The solvent was removed in vacuo and 

brought back into the glove box to be re-dissolved in diethyl ether and filtered through a 

pipette packed with glass wool and celite. Slow evaporation of the diethyl ether afforded 

green crystals identified as BpinPDIFe(CO)2 (13) (61%). 

FTIR (ATR): v(CO) 1950 and 1888 cm-1. 

1H NMR (CD2Cl2): δ = 8.13 (dd, J = 7.9 Hz, 2 H, o-pyr), 7.69 (dd, J = 7.3, 1.2 Hz, 1 H, o-iPrAr), 
7.56 (t, J = 7.3 Hz, 1 H, p-pyr), 7.48 (dt, J = 7.9, 1.22 Hz, 1 H, p-iPrAr), 7.22 (m, 5 H, o,m,p-
BpinAr), 2.59 (septet, J = 6.7 Hz, 1 H, CH(CH3)2), 2.54 (septet, J = 6.7 Hz, 1 H, CH(CH3)2), 2.43 
(s, 3 H, (CH3)C=N), 2.36 (s, 3 H, (CH3)C=N), 1.26 (d, J = 6.7 Hz, 3 H, (CH3)2CH), 1.40 (d, J = 6.7 
Hz, 3 H, (CH3)2CH), 1.06 (d, J = 6.7 Hz, 3 H, (CH3)2CH)), 1.02 (s, 6 H, Bpin(CH3)2), 0.92 (d, J = 
7.3 Hz, 3 H, (CH3)2CH), 0.86 (s, 6 H, Bpin(CH3)2. 
 
13C{1H} NMR (CD2Cl2): δ = 216.3, 213.1 (2 s, Fe(CO)2), 159.9, 157.4, 155.6, 150.4, 145.4, 
140.9, 140.8, 134.9, 131.1, 128.5, 126.5, 125.2, 124.0, 123.9, 123.4, 121.2, 120.9, 117.9, 
83.6, 27.9, 27.8, 27.7, 25.2, 25.1, 24.9, 24.8, 24.8, 24.7, 24.2, 17.1, 16.8, 16.3, 14.4.  
 
11B{1H} NMR (CD2Cl2): δ = 33.6 (s, Bpin). 

Elemental: C35H42BFeN3O4•C4H10O (709.33): calcd. C, 66.16; H, 6.66; N, 6.61; found C, 65.83; 
H, 7.58; N, 6.11. 
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